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1. STARK PROFILES OF FORBIDDEN AND ALLOWED TRANSITIONS

IN A DENSE, LASER-PRODUCED HELIUM PLASMA

Introduction

The Stark profile of an allowed spectral line interacting with a nearby forbidden

transition has received much attention in recent years. Not only is this problem of

basic theoretical interest but a thorough understanding of it will provide a powerful diag-

nostic method of determining plasma densities. Not only the linewidth of a Stark-

broadened line but the intensity ratio and relative shift of the two components can be

used in a sensitive determination of plasma density.

In the conventional theory - 3 for the computation of a pair of interacting lines, the

quasi-static approximation for the perturbing ions and the impact approximation for the

perturbing free electrons are ordinarily used. Recent measurements 4 ' 5 have shown

that agreement along the allowed line profile is generally good, but the forbidden line
4

appears to be weaker and broader than predicted by theory. Burgess suggests that

ion dynamics, which is ignored in the quasi-static approximation, may be important in
6

determining the profile around the forbidden line. Griem shows that this is indeed so,

and calculates in an approximate way the magnitude of the effect. The reduction of the

peak intensity of the forbidden line caused by ion motions turns out to be quite appre-

ciable and the effect is stronger, the lower the electron density and the higher the

temperature.

In this report we present a theoretical and experimental study of a pair of neutral

helium lines that have not been examined hitherto, the 6678 A (2 P-3 D) allowed line

and the 6632 A (2 P-3 P)forbidden line. We discuss theory and computations, describe

our experimental results, and make comparisons with theory.

Calculations of Line Profiles

a. Neglect of Ion Dynamics

The combined profile of the 21 P-3 1D, 31 P allowed and forbidden lines is calculated

for a variety of electron densities and temperatures. Our method follows closely

This work was supported by the U. S. Atomic Energy Commission (Contract

AT(30-1)-3980).
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Griem's computations of the 23P-43D, 43F pair of helium lines; that is, the perturbing

ions are treated in the quasi-static approximation and the perturbing electrons in the

impact approximation. Only two states, 3 1D and 31 P, are allowed to interact, and the

effect of the 3 1S state is included as a correction.

Within the framework of the above -mentioned approximations, the Stark profile of a

pair of allowed and forbidden lines is given by Eq. (16) of Griem's paper. 7 The distribu-

tion function of ion field strengths is taken from Hooper. The matrix elements of the

operator (, which describes the electron impact broadening, are calculated in the limit

of high temperatures where the electrons induce a broadening but not a shift. This is

certainly justified for transitions between the 3 1D and 31 P states. For transitions

31 P-3S the high-temperature approximation is rather poor, but the contribution of this

transition is small enough to make the resulting error insignificant.

The influence of the 31S state is taken into account in the same way as Grieml did

for the 4 3 P state. Since this influence is appreciable only at high field strengths where

the 31 P and 3 1D states are well mixed, the 3 1S state is assumed to give rise to a qua-

dratic Stark effect while interacting with the two overlapping 31 P, 3 1D states (at any

field strength). This interaction results in a shift of the 31D and 31 P levels away from

the 3 S state and an increase in their intensity. For this Stark effect to be truly qua-

dratic, the increase in intensity should be small, less than, say, 10%. We then find from

Eq. (27) of Griem's paperl that the maximum permissible field (with the magnetic quan-

tum number m = 0) is approximately 5000 CGS units. If this field is taken to be ten times

larger than the normal Holtsmark field, E. = 2.61 eN 2 , where e is the electron
0 17 -3

charge, and N the plasma density, it follows that N ;3 X 10 cm . This means that

for densities less than this value, the assumption of a quadratic Stark effect is valid over

~95% of the area enclosed by the field distribution function. When the density exceeds
17 -3 1 1 13 X 10 cm , the three states 3 S, 3 P, and 31 D should be treated on an equal footing

right from the beginning. Now a three-dimensional rather than a two-dimensional secu-

lar equation must be solved in order to determine the quasi-static shifts, and a three-

dimensional matrix must be inverted to obtain the combined line profile arising from

both electrons and ions.

The transition 21 P-3 S at 7281 A is of no particular interest to us, since it is an

allowed line in a spectral range not readily accessible to measurements; thus, its pro-

file has not been calculated. Note, however, that the third level (43 P) in Griem's work

gives rise to the forbidden transition 2 3 P-4 3 P, and this reduces the intensity of the other

two lines, 2 3 P-4 3 D, F. In our case, the third level gives rise to an allowed transition,

the 21 P-3 1S, which enhances the two other lines through its interaction with the 21 P-31 P

forbidden transition.

Figure VI-1 illustrates the general features of the Stark profiles for different plasma

densities. We see that as the density increases the two lines broaden and shift away
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Calculated Stark profile of the allowed 21 P-3 1D line

and the 21 P-31P forbidden component of neutral helium,
16 17

for three plasma densities, N = 1 X 10 , 1 X 10 and
17 -3

3 X 10 cm . Temperature, 20,000'K; total area
under the combined lines is integrated to unity. For N =

16 -3
1 X 10 cm , the peak intensity at '6678 A reaches a

value equal to 0. 68 A-1

from one another, the shift of the forbidden line being the more pronounced. Also, the

intensity of the forbidden line grows at the expense of the allowed line. The profiles

shown in Fig. VI-1 are normalized to unity when integrated over both lines, except for

a small correction (much less than 1%) caused by the interaction with the 31 P state.

In summary, the main approximations in our calculations are: (i) the quasi-static

approximation for the ions; (ii) the impact approximation for the electrons; (iii) the high-

temperature approximation in the evaluation of the ) matrix elements; (iv) neglect of

the broadening of the lower 21 P level, and (v) neglect of other intermediate states. Let

us consider these one by one.

1. The quasi-static approximation holds for frequency separations AW from the

line center in excess of the reciprocal of the average ion collision time, T.

N-/3(M/KTi ) / 2 , where M is the ion mass, and Ti the ion temperature. This
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Table VI-I. Normalized line-intensity profiles of the allowed ZI P-31D neutral helium

line and of the 21P-3 P forbidden component. Doppler broadening is taken account of for
15 -3 16 -3

plasma densities N=3X10 cm and 1X 10 cm The intensities are given to three
significant figures. The last number and the sign in front of it specifies the power of ten

by which the intensity must be multiplied (for example, 0.345-3 means 0.345X 10-3).

15 -3
N = 3 x 10 cm

10000 20000 40000
oK oK oK

0.142-4
0.214-4
0.346-4
0.575-4
0.678-4
0.817-4
0.102-3
0.134-3
0.159-3
0.194-3
0.253-3
0.368-3
0.720-3
0.594-3
0.725-4
0.386-4
0.297-4
0.255-4
0.316-4
0.428-4
0.625-4
0.101-3
0.289-3
0.490-3
0.101-2
0.165-2
0.316-2
0.842-2
0.178-1
0.220-1
0.384-1
0.847-1
0.317-0
0.143+1
0.175+1
0.146+1
0.760-0
0.436-0
0.195-0
0.852-1
0.426-1
0.190-1
0.699-2
0.364-2
0.152-2
0.829-3
0.522-3

0.137-4
0.207-4
0.336-4
0.561-4
0.664-4
0.802-4
0.100-3
0.133-3
0.158-3
0.193-3
0.253-3
0.372-3
0.742-3
0.602-3
0.696-4
0.360-4
0.271-4
0.223-4
0.274-4
0.369-4
0.539-4
0.869-4
0.249-3
0.422-3
0.867-3
0.142-2
0.272-2
0.722-2
0.153-1
0.188-1
0.329-1
0.726-1
0.276-0
0.132+1
0.157+1
0.131+1
0.753-0
0.421-0
0.185-0
0.800-1
0.398-1
0.177-1
0.653-2
0.340-2
0.142-2
0.775-3
0.489-3

N I 1016 -3
N= Ix10 cm

10000 20000 40000
oK "K oK
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6590.00
6600.00
6610.00
6618.00
6620.00
6622.00
6624.00
6626.00
6627.00
6628.00
6629.00
6630.00
6631.00
6632.00
6633.00
6634.00
6635.00
6640.00
6645.00
6650.00
6655.00
6660.00
6667.50
6670.00
6672.50
6673.75
6675.00
6676.25
6676.87
6677.00
6677.30
6677.60
6677.90
6678.10
6678.20
6678.30
6678.40
6678.50
6678.70
6679.00
6679.37
6680.00
6681.25
6682.50
6685.00
6687.50
6690.00

0.131-4
0.201-4
0.327-4
0.546-4
0.648-4
0.785-4
0.985-4
0.131-3
0.156-3
0.192-3
0.252-3
0.372-3
0.757-3
0.584-3
0.626-4
0.317-4
0.235-4
0.188-4
0.229-4
0.309-4
0.450-4
0.724-4
0.207-3
0.351-3
0.722-3
0.118-2
0.226-2
0.601-2
0.127-1
0.156-1
0.273-1
0.604-1
0.233-0
0.112+1
0.134+1
0.121+1
0.734-0
0.400-0
0.173-0
0.739-1
0.367-1
0.163-1
0.603-2
0.315-2
0.132-2
0.721-3
0.458-3

0.489-4
0.726-4
0.118-3

0.197-3
0.233-3
0.281-3
0.352-3
0.468-3
0.556-3
0.686-3
0.887-3
0.124-2
0.180-2
0.121-2
0.404-3
0.218-3
0.154-3
0.983-4
0.110-3
0.144-3
0.205-3
0.326-3
0.913-3
0.153-2
0.308-2
0.494-2
0.921-2
0.230-1
0.453-1
0.544-1
0.873-1
0.160-0
0.347-0
0.552-0
0.626-0
0.648-0
0.617-0
0.553-0
0.396-0
0.232-0
0.133-0
0.637-1
0.242-1
0.126-1
0.519-2
0.282-2
0.177-2

0.474-4
0.703-4
0.115-3
0.195-3
0.231-3
0.281-3
0.354-3
0.474-3
0.568-3
0.706-3
0.925-3
0.132-2
0.198-2
0.129-2
0.405-3
0.212-3
0.147-3
0.883-4
0.970-4
0.125-3
0.178-3
0.282-3
0.784-3
0.131-2
0.263-2
0.422-2
0.786-2
0.196-1
0.387-1
0.465-1
0.752-1
0.141-0
0.327-0
0.564-0
0.645-0
0.677-0
0.655-0
0.591-0
0.416-0
0.235-0
0.132-0
0.619-1
0.231-1
0.120-1
0.491-2
0.267-2
0.167-2

0.456-4
0.678-4
0.112-3
0.192-3
0.228-3
0.278-3
0.352-3
0.476-3
0.572-3
0.717-3
0.950-3
0.138-2
0.219-2
0.134-2
0.380-3
0.194-3
0.132-3
0.760-4
0.821-4
0.105-3
0.149-3
0.235-3
0.653-3
0.109-2
0.219-2
0.350-2
0.651-2
0.162-1
0.321-1
0.387-1
0.628-1
0.120-0
0.300-0
0.568-0
0.648-0
0.684-0
0.674-0
0.622-0
0.433-0
0.235-0
0.128-0
0.592-1
0.218-1
0.113-1
0.459-2
0.250-2
0.156-2

I
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requirement (AwT. >>1) is almost always satisfied, except close to the line center where

electron collisions or the Doppler effect often dominate. Note, however, that this argument

cannot be extended to the case of forbidden lines for a reason that will be discussed.

2. The classical path impact approximation for electrons is valid when the

average angular momentum quantum number f for colliding electrons,9 given by

N- /3(mKTe )1/2/E, is much larger than unity. For conditions covered in Fig. VI-1

and Table VI-1, 2 varies between 25 and 200, and the inequality f >> 1 is fully satisfied.

A second condition 9 for the validity of the classical path impact approximation is that

strong collisions (with small 2) contribute little to the broadening. In other words, R=

n 2hA/KT << 1, where n is the principal quantum number of the upper level. For KT ~

2 eV, the approximation begins to deteriorate (R > 0. 1) for separations from the line

center exceeding -70 A. Thus no significant errors are expected except, perhaps, at

low temperatures and large frequency excursions Aw, where the profile is probably not

measurable because the density is also low.

3. Errors attributable to the high-temperature approximation in the evaluation of

the matrix are always smaller than approximately 10%. We infer this from the more

exact calculation of electron impact broadening of Griem and co-workers.10

4. The broadening of the lower level of the transition (21 P), which also causes

broadening of the resonance line 1 S-21 P, contributes only a few percent to the total

line broadening and thus can be safely neglected.

5. Finally, omission of other intermediate states (for example, with n = 4) should

cause only small errors. This judgment is based on the fact that a similar omission of

states with n = 3 in line-profile calculations of states with levels n = 4 likewise caused

small errors.

Thus, on the basis of these estimates, we believe that we are justified in claiming

that the errors in the computed line profiles do not exceed 10%, on a par with other cal-

culations of this kind.

b. Effect of Ion Dynamics on the Forbidden Line

The total integrated intensity of the forbidden line is determined mainly by the per-

turbing ions which have been hitherto treated quasi-statically. The colliding electrons,
4

on the other hand, spread out the line and determine its shape. Recently, Burgess sug-

gested that ion motions may be important at and near the peak of the forbidden line. This

effect is expected to be more prominent at low plasma densities where the line is nar-

rower; here the frequency range around the peak where dynamic effects are impor-

tant constitutes a larger portion of the line shape (the range Ac over which the impact
1/3

approximation applies varies as N , whereas the linewidth varies as N).

There is still no comprehensive theory that properly includes the dynamics of the

ions. Recently, Griem 6 has calculated a forbidden-line profile in which the ions are
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treated in the impact approximation; the plasma density is assumed to be sufficiently

small that the linewidth of the forbidden line is much smaller than the frequency separa-

tion A between forbidden and allowed lines. The final profile is a convolution of pro-

files that are due to the electrons and the ions. The former is taken to be a dispersion

profile of halfwidth w, which is the appropriate diagonal matrix element of the impact

operation c. The latter is calculated from the impact approximation of a single per-

turber (binary collision) in which the electron velocity is replaced by the ion velocity,

and the ion temperature is assumed to equal the electron temperature.

The total integrated intensity of the forbidden line is then adjusted to be consistent

with the quasi-static calculation described above. This means that ion collisions merely

change the line shape but not its over-all intensity. In reality, the quasi-static ion

shifts make the line asymmetric, but this effect is not considered in the present theory.

Therefore only the gross features of the recalculated forbidden-line profile can be

compared with the earlier theory or with experiment.

Subject to the above limitations, the "ion" profile of the forbidden line is given by

I(w) = (4r/rr2 )(A 2 /w2) a( [c-A]/A r). (1)

The function a( Iz ) of Eq. 1 is defined as

a(z )= JzJ K 0 (JzJ)K 0 z ),

where K 0 and K 1 are the modified Bessel functions of order zero and one. The param-

eter r is determined by the normalization procedure for the integrated line intensity

discussed above; it is given by

r = 0. 25 (4R2/3)1/4 [rrnMhA/mKT]1/2

with R as the radial matrix element between the two upper levels.

The effects of ion dynamics can now be found by comparing the final convolved line

profile calculations made by means of Eq. 1, with the electron impact profile presented

in Fig. VI-1. Since Eq. 1 does not allow for line asymmetry caused by ion static shifts,

a detailed comparison of line shapes has no value. For that reason, we make compari-

sons at two characteristic points of the forbidden-line profile only. One is at the

center (peak) value of the forbidden line; the other is at a wavelength situated midway

between the unperturbed positions of the allowed and forbidden lines. Figure VI-2

illustrates the results of such calculations. For a given density and temperature,

the ordinate value of each graph determines the numerical factor by which the inten-

sity (of Fig. VI-I) must be multiplied to take proper account of ion dynamics. The

upper graph of Fig. VI-2 refers to the correction appropriate to the peak of the for-

bidden line; the lower graph refers to the corresponding correction to be made midway
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between the allowed and forbidden lines.

Figure VI-2 shows that ion motion lowers the peak intensity of the forbidden line and

increases the intensity midway between allowed and forbidden lines. As expected, the

0.8

0T =30,000 K
0

0 0
E T T = 0 I 000 K K

< 2.0

ELESTRON DENSITY (cm-!

Fig. VI-2. Theoretical correction factors caused by ion dynamics, for
different temperatures and densities, to be applied to the
forbidden-line profiles calculated in Fig. VI-1. Upper graph
refers to the correction that must be made at X1 , the peak of

the forbidden line; lower graph shows the corresponding cor-
rection at wavelength 2, ' which lies midway between the

allowed and the forbidden lines.

effects are more pronounced, the lower the plasma density and the higher the tempera-
17 -3

ture. For densities in excess of 10 cm , the corrections caused by ion motions are

indeed small and Table VI-1 can be used as it is. At lower densities, and short of a

complete theory which includes ion dynamics in a self-consistent way, the corrections

imposed by Fig. VI-2 will henceforth be used in comparing theory with experiment.

Stark Profile Measurements of a Laser-Produced Plasma

11
The plasma produced by the relatively novel, pulsed CO 2 laser is a very conve-

15 19 -3nient spectroscopic source for plasma densities in the range 10 -10 cm . Our laser

produces 1-2 MW pulses of radiation at 10. 6 [i wavelength. The pulse duration is
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approximately 200 ns, and the repetition rate can be as high as 15 pps. This high repe-

tition rate can be as high as 15 pps. This high repetition rate and good shot-to-shot

reproducibility of the laser output permits spatial and temporal spectroscopic measure-

ments of our plasma with good signal-to-noise ratio.

Figure VI-3 shows the experimental arrangement. The laser radiation is focused

into a gas cell by means of a germanium lens of 3. 8 cm focal length. The cell is filled

with spectroscopically pure helium to a pressure of 3/4 atm. The light from the helium

plasma generated by the laser pulses is focused onto the slits of a 0. 5 m scanning spec -

trometer provided with a motor-driven wavelength scan (Jarrell-Ash, Model 82-020) and

a photomultiplier output. The output signal from the photomultiplier is fed into a boxcar

integrator (PAR Model 160) and then to graphic display equipment. The boxcar gate

width is typically 250 ns, and thus represents the time resolution of our measurements.

The gate can be set to any desired time delay relative to the time the laser is fired. This

enables us to probe the entire afterglow history of the slowly decaying plasma. All mea-

surements reported here, however, were made at a fixed time of 5 ps.

PULSED C02 LASER

GERMANIUM LENS ' /OPTICAL FLAT

GAS CELL - 0.5 METER
SCANNING Fig. VI-3. Experimental arrangement.

SPECTROMETER

LPHOTOMLTIPLIER

GATEDBOXCAR REFERENCE TRIGGER
NTEGRATOR FROM LASER

CHART
RECORDER

Initially, the helium plasma is almost fully ionized (N 1019 cm - 3 ) and expands

rapidly. At the time of our measurements (5 [s) the expansion has almost ceased and
17 -3

N has fallen to ~10 cm . Now the plasma is roughly cigar shaped with the major

axis pointing along the laser beam; it is 0. 6 cm long and 0. 2 cm in radius. Spatial reso-

lution is achieved by placing an optical flat between the condensing lens and the spectrom-

eter slits (see Fig. VI-3). Rotation of the flat focuses different radial regions of the

plasma onto the entrance slit of the spectrometer. The slit height is typically 0. 02 cm,

and the slit width is ~20 p.. With a magnification of our condensing lens equal to ~2, a

spatial resolution better than 0. 01 cm is achieved.

Detailed spatial and temporal properties of the plasma will be reported elsewhere.12

Here we need only point out that the plasma is quite symmetrical about the major axis

of the plasma "cigar," and, therefore, Abel inversion of all our results is entirely

QPR No. 102
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appropriate. For each spectral line examined, 20 lateral positions are obtained, and

the results are Abel-transformed by means of a computer -generated program. This

yields the desired line profiles as a function of radial distance from the plasma axis.

We have found that the neutral helium lines are emitted preferentially from the cool,

outer cylindrical gas shell. The shell surrounds a hot, dense core that emits predom-

inantly ionic lines. The plasma density within the outer shell is determined by mea-

suring the Stark profile of the isolated 4713 A He I line. After Abel inversion of the

results, each profile, corresponding to a given radial position r, is computer-fitted

to the theoretical line profile. 1 3 Figure VI-4 illustrates a typical result for a radial posi-

tion r = 0. 11 cm. In this manner, the radial plasma density distribution is determined.

D 4 Hel

> 23P-43S

Fig. VI-4. Stark-broadened profile of the
_J 3 3 3

2 P-4 S neutral helium line. Solid
line refers to the Abel inverted ex-

S2 perimental profile at a radial dis-
S. tance of 0. 11 cm from the plasma

w. axis; points represent the best fit
S_ .with the theoretical profile with
z * 16 -3
SN= 3.8X10 cm and T = 34,0000 K.

r o
4705 4710 4715 4720

WAVELENGTH (A)

As is well known, the profile also depends somewhat on the electron temperature, and

we deduce this quantity from the intensity ratiol4 of the following ionic and atomic lines:

HeII (4686 A) and Hel (5876 A). We believe that we can measure plasma density to an

accuracy of better than 15%. The measured apparatus width is generally much smaller

than that of the observed lines and can usually be neglected. When this neglect is not

justified, the measured linewidth has been correctedl 5 appropriately. Also, at the time

of observation (5 [s), self-absorption of all of the lines employed is found to be negli-

gible, with the exception of the strong 5876 A HeI line. To prove this, light emitted

by the plasma in the direction away from the spectrometer slits is reflected back into

the plasma by means of a spherical mirror. Measurement of the relative increase in

the spectrometer output gives the absorptivity of the medium. The mild self-absorption

observed for the 5876 A line causes no serious difficulties. We do not use this line for

density determination but only to obtain values of the electron temperature from the inte-

grated line intensity. In this case even a substantial error in intensity causes but a

minor error in the temperature.

Figure VI-5 shows a characteristic recorder output of the allowed and forbidden line
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combination obtained by looking straight toward the plasma center. Although the for-

bidden line intensity is only approximately 1% of the intensity of the allowed line, it is

recorded with good discrimination and good signal-to-noise ratio.

Data like those shown in Fig. VI-5 are obtained for 20 different lateral positions,

and are Abel-inverted. Figure VI-6 shows the results for a distance r = 0. 10 cm mea-
sured from the plasma axis. The solid points refer to the Abel-inverted measurements.

The lines represent theoretical profiles calculated and normalized to best fit the allowed

line. We note that this fitting procedure yields still another independent value for the
plasma density. It is reassuring that these densities agree within 15% with the densi-

ties deduced from the Stark-broadened 4713 A HeI line (see Fig. VI-4).

We see from Fig. VI-6 that agreement along the allowed line is generally good, as

expected, since there are no serious theoretical uncertainties in regard to this portion

of the line profile. But we note quite substantial discrepancies along the forbidden line,

similar to those found by earlier workers for other helium forbidden transitions. 4 ' 5 The

observed discrepancies between experiment and theory are more than a factor of two in

intensity, and they cannot be removed merely by changing the plasma density or its tem-

perature. When we apply the correction factor of Fig. VI-2 (upper curve) to the peak

of the forbidden line, however, the disagreement is effectively removed. The results

are less convincing when we attempt to make a similar correction to the intensity mid-

way between the allowed and forbidden lines, by using the lower graph of Fig. VI-2. It

may well be that the poorer agreement at this wavelength position results from the fact

that the impact approximation for ions is less satisfactory here than it is at the center

of the forbidden line.

In conclusion, we see that ion dynamics seems to explain the main differences

between experiment and the conventional theory used in calculating Stark-broadened for-

bidden lines. A final test awaits a more comprehensive theory. Until then, the com-

bined profile of allowed and forbidden lines can be safely used for plasma density

determinations, provided only that the results given are appropriately augmented by the

correction factors of Fig. VI-2.

B. Ya'akobi, E. V. George, G. Bekefi, R. J. Hawryluk

(Dr. B. Ya'akobi is a member of the Department of Physics and Astronomy, University
of Maryland.)
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1. NONLINEAR FEEDBACK CONTROL FOR ALCATOR

Strategy

The successful operation of plasma devices for fusion power will depend upon the

production of high-temperature plasmas in a confined volume. A major limitation on
the heating currents in Tokamak-type devices is the problem of MHD kink modes of the
system, which become unstable at certain threshold current values, with a resulting
loss of plasma and energy.

One possible solution to the problem is feedback stabilization of the system. Because
such a system would require very large feedback currents and bandwidths, it is most
practical to use nonlinear feedback in the form of switches rather than linear ampli-
fiers.

We therefore envision a Tokamak device, enclosed in a conducting shell, with feed-
back current straps projecting into the vacuum region between the plasma and the shell.
A sensing signal is generated for each strap which is a weighted average of the local
displacement of the plasma surface. This signal is operated on in some nonlinear fash-
ion, feedback currents flow in the strap, and the result is an additional force on the
plasma surface. This force is distributed locally according to a second weighting func-
tion. Clearly, with a finite number of sensor outputs, the state of the entire system
is not known. Thus much of optimal control theory is not applicable here.

We must now answer certain questions before designing our feedback system. How

will feedback affect the stability of the equilibrium? How much current will be needed?
How fast must these currents be switched? How many straps are needed, and what is
the best geometry for sensing and forcing?

Once these questions have been answered, more pointed conclusions about fea-
sibility, hardware, and experimental questions can be drawn. To approach these

This work was supported by the U. S. Atomic Energy Commission (Contract
AT(30-1)-3980).
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questions, we shall first extend the energy principle for hydromagnetic stability to sys-

tems with nonlinear feedback. We shall then develop a general description of switched,

or "bang-bang" feedback, with stability criteria and design considerations. Then we

shall apply our results to a proposal for feedback stabilization of the M. I. T. Alcator

device, a high-field Tokamak now under construction.

Notation

Perturbations of the plasma are denoted a(r, t), where r is the position in terms of

a periodic cylindrical model, with coordinates 0 < r < a, 0 < 0 < 2w, and 0 < Z < 2-rR.

Here a and R are the minor and major radii of the torus. Equilibrium mass density p,

current J (r), toroidal field H Z , and poloidal field Ho(r) are assumed, with H (r)=

Ho(r) O + HZZ.

The sensor distribution for the Kth feedback strap is denoted AK(T), and the resulting

signal referred to as the discriminant DK(t). Our feedback can interact only with the

surface of the plasma, which encloses the equilibrium volume V.. The vacuum region
th

is denoted V . A feedback field HF from the K feedback strap produces a normal
o F

force distribution BK(r) on S, and the nonlinear signal processing is denoted by the

function FK(DK).

The proof of self-adjointness of perfectly conducting hydromagnetic systems, which
1

is the basis of the energy principle described by Bernstein et al. and explained in detail

by Chandrasekhar, 2 implies the existence of orthonormal modes of such systems. There-

fore we write

(F, t) = am(t) m(r), (1)

m

modes that are orthogonal in the sense that

. Pm n mn m

1

Any convenient normalization may be assumed.
th

Here we denote by pm the effective mass of the m mode. Without feedback, the

modes behave as a (t) = a (0) cos w t + a (0) sin c t/m . Therefore we have a

positional feedback force normal to S produced by each of N feedback stations, pro-

ducing a total force

N

F (T, t) = -BK(r) FK(DK(t)) (3)

K=l
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with discriminant

DK (t) = S
AK() (, t) dS = AKmam(t)

m

where we have defined

AKm = AK(F) m ( F ) dS.

The system is diagrammed in Fig. VI-7.

7 -- -- - -
LINEARIZED SYSTEM I

B MODE I A
E I + ANI

B MODE 2 A2
BN2 + ANN

+ MODEm ~ Fig. VI-7. Nonlinear feedback to a linearized dis-, + Atributed 
system.

(4)

If velocity feedback is also

force of the form

desired on S 1
it is assumed to be an additional

N

FV(r, t) =

k=l

- BK'd(F) nFK

with D K defined analogously in terms of AK(r) and (r, t).

Extension of the Energy Principle

Derivation of the energy principle is rather lengthy and will not be repeated here.

Instead, we shall describe the derivation of the equation governing the behavior of each

mode amplitude in the presence of externally applied forces. Viscous effects are

added later.

The MHD equations of the linearized system can be used to eliminate all variables

except the displacement, thereby resulting in the form

2

p F(5), (5)
a t
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where F(f) is the appropriate linear operator. We dot-multiply (5) with Sm(r) to pick

out a single mode, and integrate over V.. Integration of the right-hand side involves use
1

of force equilibrium on the plasma boundary, including the feedback terms. Thus the

result is

8 2am + 2 =
mL 8t2 m m S * (F +FV) dS.

We may then multiply each mode equation by dam/dt and sum over all modes to obtain

dE = -B, E = T + T + U,
dt

where

S da 2
dT= kPm m >0

mdt
m

1 2 2
- P CO a2mm m W defined with no viscosity

- AEK :s BK(F) - n dS

EK[FK(DK)-F K(EK) + BV

N

U = E k FK(DK) dDk,

K=I

N N

B= EkFK(DK)-

K=1 K=1

Here the last term, B V , represents any viscous effects in the system, with B V > 0.

The first term in B is due to velocity feedback and has the same damping effect as vis-

cosity. Thus, to avoid pumping energy into the system, we want to design our sen-

sors and enforcers so that Ek(r) = Dk(F). Similarly, looking at the second term in B

we want EK(F) = DK(F). This tells us that the spatial weighting of the sensing and asso-

ciated forcing elements should be as similar as possible: AK(F) = BK(). Then we

require that our feedback functions be restricted to the first and third quadrants, so

0 K FK(x) dx > 0

and D F' (Dk) > 0 for all feedback functions F K.K KIK"
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Bang-Bang Feedback

We now specialize to bang-bang feedback, where FK is constant in magnitude and

changes sign, according to

D
FK(DK) = FK (9)

lDK

K
K K K

Thus, from (7), we now have,

N N

U= > FK DK = FK AKmam (10)

K=l K=1 m

N

B= F DK +BV

K=1

This form of nonlinear feedback has several advantages. It is much easier to imple-

ment at high power and bandwidth than linear feedback, and it dominates the dynamics

of the system for small perturbations, as can be seen from (7) and (10).

Stability

We then ask, given a system with its modes and growth rates known, how many feed-

back stations are needed, and how should they be designed for most efficient stabiliza-

tion ?

To answer these questions, we order the modes by ascending algebraic order of w2
2m

Let M be the (finite) number of modes with nonpositive values of W2. We use Lyapunov

stability theory, with the state of the system described by the mode amplitudes a (t) and
2 l2 me look

velocities a(t). The norm of the state is defined as I2 2 1/2 = We look

for a region of stability in this space, such that if the state of the system lies

inside this region at sometime t = 0, then its norm will be bounded for all time. This

will be true if we can show that for all S in the region of stability, where S is the state

vector,

dE
dt
dt
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and

aE aE
VE * S - a + - m > 0 near S = 0.

j aa m . m
m

This will make E a Lyapunov function of the system in that region bounded by E(S) =

E = E(S ), VE = 0 at S = S
0 0 S O

The first condition is clearly true from (7) and (10) for any S. We might use velocity

feedback to insure its being satisfied for small mode velocities if nonideal effects such

as time lag in the feedback system lead to negative terms in B.

The second condition will be satisfied for sufficiently small IS (stability of the null)

if we can guarantee that

7 E 2 2aa= a a =2 >0
a m mm

m m

for all S such that the feedback is unexcited; that is, U = 0, or DK = 0 for all K. Note

that if there were no feedback the condition above simply says that all modes of the

system must be stable, and so agrees with the energy principle.

To test for null stability, given a feedback configuration, we use DK = 0 to solve for

the am , m < N in terms of the other mode amplitudes. Then we substitute in ,IJ and use

Sylvester's test for positive definitives of the quadratic form. This test will require

only a few calculations in most cases, although the full matrix is infinite dimensional.

Further manipulation of this form shows that N = M is the minimum number of feedback

stations needed. For instance, by letting each station pick out one mode, N = M is

clearly sufficient for that design. We also learn that the design criterion for efficient

stabilization is that our feedback have maximum coupling to the first N modes, with

minimum coupling to all others. We also require that the separate feedback stations

be linearly independent in their spatial distributions. More rigorous treatment shows

that we wish to maximize

det A, where A.. = A , 1 < K - N, 1 - m < N (11)
m

and N > M. If practical considerations restrict the design so that the quadratic form "P

is not positive definite, so that the null is not stable, then it can be stabilized either by

improving the design of AK( 7 ) or by increasing the number of stations beyond M. Note

that, if two unstable modes have exactly the same spatial variation on the surface,

det A = 0, and there is no way to stabilize the system with surface feedback alone.

Thus if such modes exist and cause serious disturbance to the system, volume
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feedback is required. Generalization of these results to feedback distributed through

the volume is not difficult, but physical realization might well be.

Velocity feedback alone can never stabilize an unstable system. Velocity feedback

augments viscous effects, however, in minimizing the errors of small time delays and

hysteresis in the feedback loops. These effects can be expressed as a negative contribu-

tion to B, and are nonzero only for small values of the discriminant. Thus, for any

feedback scheme to work, its time delays must be a small fraction of a typical time con-

stant of the system.

Region of Stability

How large a disturbance can be stabilized with this feedback scheme? The answer

is best expressed as a region in the state space, such that if the system is initially at

any point in the region it will have bounded response for all time. This region is

enclosed by some surface. We look for a surface E(S) = Eo, enclosing the origin, such

that any initial state within this surface is within the stable region. The value of E is
-E 3E o

found by VsE = 0or aa- - 0 to get
m

m

N FA o
o K Km Ka= 0, a = (12)m m 2

K=1 PmWm DK

Solution of these equations involves finding a self-consistent set of a' and DK/ D/
m K

but that is not too difficult, since N is generally small, and so the number of pos-

sibilities for the sign of DK is manageable. No solution implies global stability of the

system.

The region of stability is then bounded by the surface E(i) = E , where

N 2

Eo 1 2 FKAKm DK (13)

m 2Pmm K-1 DK

which converges quickly for well-designed systems. Thus, given information about the

expected amplitude of disturbances, the required feedback force F K can be calculated.

One other possible variation should be noted. If the system can be taken as incom-

pressible, and if feedback stations cover the entire surface S, then it is possible to

design the system so that it only exerts force in one direction:

SK K
FK(D K ) =2 + . (14)DKI
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The result is that the first term in (14) has no net effect, and so the effective bang-

bang force is half that which is applied.

Alcator

The proposed Tokamak-type device now under construction at M. I. T. is a possible

application of the above-mentioned feedback scheme. It is a toroidal device, with the
3

following approximate projected operating range :

Major radius R = 0. 5 m

Minor radius of plasma a = 0. 13 m of shell RW = 0. 15 m
7

Toroidal field H = 130 kG = 107 A/m
Z20 3

Particle density N = 5 X 1020/ 3

Mass density p = 8 X 10 kG/m3 (protons)
H a

Estimated q = q= 2. 5 without feedback,
H 0 (a)R o

where (r, 0, Z) are consistent with a periodic cylinder model.

The purpose of putting feedback on such a device would be to alter the dynamics so

as to lower the value of q consistent with stability of the surface. As long as there is

a vacuum region between the conducting shell and the plasma, q > some qo will be a limi-

tation on the heating current. Ideally, feedback would allow any value of heating current

without instability of the surface.

We have a modelling problem in designing this system. Theoretical predictions of

growth rates are unreliable and depend critically upon the radial current distribution,

which is difficult to measure. Therefore we shall choose a simple uniform current dis-

tribution (JZ(F) = constant), and assume these results to be approximately correct

for real situations. We take our modes to be expressed as a Fourier transform of the

normal surface perturbation and let the radial variation adapt itself to satisfy the- equa-

tions of the system. Thus on S,

r() aijmn(t) cos (m 0 + n Z + i

i=O j m=O n=-co

where we have normalized ijmn(F) so that the maximum value of r on S is unity. We

expect the worst situations to occur when the m = n = 1 mode approaches the interchange

condition. Therefore our operating point will be assumed to lie near q = -1 or H (a) =

-H a = -2. 5 X 106 A/m.
ZR

Design

We refer to the work of Shafranov 4 and others for derivation of the dispersion rela-

tion and final form of the modes. For convenience, we define the following quantities:
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= m + nq (a measure of deviation from interchange condition)

2 2
2 _ o imn
mn 2P (growth rate)

m H (a)
oG

For long-wavelength modes (na/R << 1) the following dispersion relation applies:

This gives a maximum growth rate of

22when 2 (16)
Inserting Alcator parameters, this gives Y= = 0. 13. Taking m = n = 1, we see that

q = -0. 87 is in the expected range. Higher m modes would be unstable at higher q but

experience has shown them to be less of a problem in terms of confinement. The growth

rate, then, is given by

2 7 X 1013 s-2-o =7X10
ill

8 6 -1
h ill = 1 0

The time cT = 1 = 1. 2 10 s represents the maximum time scale that we can afford

to allow in feedback time lag, because of switching, processing, and so forth.

In addition to these modes, there may be others (j) with the same m and n, but

more complex radial dependence. These are all stable, or nearly so. In certain ranges
0

of operation near q = -1, however, theory predicts that these modes can combine with

the original kink mode to produce an unstable perturbation, with zero surface deflection

but unstable internal behavior. We refer to these combinations as internal modes, since

they satisfy the equations of the system with a new boundary condition namely, r(a) = 0.

Such internal modes, if unstable, represent a severe limitation on surface-coupled

feedback. They represent the limit of the null stability test mentioned above, where

only mode amplitudes of the m = n = 1 modes need be considered. If they grow without

limit, eventually such modes will overwhelm the feedback, and enter a new phase of

growth dominated by the fast-growing kink. It is quite possible, however, that mech-

anisms not included in our model will stabilize such modes before they get out of hand,
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since their growth rate is small. This must be verified by experiment.

We shall assume that the long-wavelength modes analyzed first are the only ones

present. Then we can use (12) and (13) to calculate the magnitude of feedback needed

for expected disturbances to lie within the region of stability.

The first thing we notice is that a' becomes very small and makes little contribu-
2 m

tion to E when wm becomes large and positive. For m/n * 1 this is the case, so we
o m

can ignore the effect of these modes. Then we note that for high m and n numbers,

even if m/n = 1 and our model predicts instability, we expect other effects (such as finite

Larmour radius) to stabilize such modes. So, for a first approximation, we shall

assume that m = n = 1 are the only modes that we need consider. If experiment proves

this wrong, then modification is clearly possible, but present available results do not

contradict this assumption.

We therefore have two unstable modes, from i = 0 and i = 1. This implies two cur-

rent straps if we can both push and pull on the plasma, or four if we can only push. The

first would be an option if we rely on a forcing term H o 0 Hf on S and reverse the cur-
2

rent. The second is possible also from a term H F , which can be significant with bang-

bang feedback. All other higher terms can be ignored if HF << H o The first

option would appear to require the least current, but, as we shall see, its contribution

vanishes at the interchange condition. This aspect will be discussed later. To do so,

we use (12) to evaluate the current needed in each scheme to stabilize a kink mode with

maximum surface perturbation of am = - (RW-a) = 10 - 2 m.
a

First, we must calculate the equivalent mass. Since we have a << 1, this gives

o 1 2 2 o8

pm 2 1[2 a2 R] = 6 X 10- kG.

We denote the coupling term AKm for i = 0 or 1, n = m = 1 by AK1. We must now

evaluate the coupling coefficients AKm and determine the currents needed. Equation 12

requires that FKAK = 8 X 103 N.

To simplify the evaluation of FKAK11' we note that

H l  H2 m n dS = Am J2 dT, (18)

2m im m

A
where J 2 = V X H2 in the vacuum region V , and A is the vector potential in that

region, because of the perturbation of H 1 by m." It satisfies the boundary condition

on S, the plasma surface, that

AA - A
nXAm = -H 1o(m * n). (19)

Thus we may rewrite the effective force as
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FA = S H  HF + -L H H  n dS
K K11 z 0oo F 2 o H

A 1 A

SA1 1 JF +2 A F11 JF dT, (20)

A

where A l l represents the perturbation vector potential attributable to 11 without feed-

back, and AFl1 the perturbation of the feedback field alone. We must then place wires

so that current will flow along vector potential lines, and so that the current is deter-

mined by the flux linked by the wire.

For velocity feedback, our integral becomes E11 *F' where E11 is the elec-
aA111

tric field at , because of the perturbation, without feedback added. Linear velocity

feedback is properly applied by any slightly conducting substance inside the conducting

shell, so that its resulting aHF/Ot creates an electric field much smaller than the per-

turbation field. Our damping interpretation corresponds to standard energy perturba-

tion results.
A A

We must now estimate the vector potentials A11 and AF11 at the feedback wires.

Since R - a << a, we may model the vacuum region as a planar geometry. Analysis of
A W
All, the perturbation vacuum potential, shows that it divides into two parts, one irrota-

tional and one solenoidal. The irrotational part produces an electric field with E =

-V, where for any mode m and n,

(~ H (a) - H) sinh K(r-R w ) rmn(a)

i(r, o, z) = p(r, o) mn K2 sinh K(R -a)

where

2 2 + 2

Coupling to this field would have to be electric, and so is relatively small for realistic

feedback fields.

The solenoidal part produces the perturbation magnetic field. This vector potential

is given by

k(nO mz)(m+nq) H (a) sinh K(r-R W) 5rm(a)oR a 6 W rmn
A l l (r,O,z) = 2 (21)

K a sinh K(R -a)

This is the term to which we can couple.
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We should notice several things about the potential. First, it points along flutes of

the surface perturbation and parallel to the equilibrium surface. Thus, this is the

direction in which our feedback currents should go, as far from RW as possible,

to maximize the term Ho • HF (see Fig. VI-8). Second, the term vanishes when

m + nq = 0, so such feedback will not affect the interchange modes. Thus, this term

will dominate situations far from the interchange situation.

UNWRAPPED TORUS

FIELD LINE H
AT q=07 , 2a Fig. VI-8. Feedback geometries for Alcator.

--- FLUTE OF MODE
m=N= I

AND FEEDBACK STRAPS 2'R

m n
Finally, we note that this term is proportional to a H (a) + H = K . H at r = a,

- mA nA
where we define the wave vector K = a + Z. This gives us an easy way to evalu-

A A
ate A F1' the vector potential attributable to the perturbations of the feedback field.

We can simply replace the factor with K * HF(a). This means that, to maximize the
2

H F force term, the feedback field should be perpendicular to the flutes, and the feed-

back currents parallel to them. We therefore see that this geometry is also optimum
2

for feedback contributions of the H F term. To the extent that HF(a) can be approxi-

mated as a constant, this geometry gives

A (22)A n - (HF ( a ) K ) sinh K(r-R W  rmn(a)AFmn K2 sinh K(R -a)

If the total current in the strap is limited, then clearly we want it all to flow in a

wire sitting at maximum vector potential, to maximize (20). Let us assume that the

H F  H o term dominates. The length of wire is approximately 2Trr. This gives a cur-

rent needed of

2FKAK A 4
I K= =2 X 10 4 A.

FI 2nA
1  21TRA 1j8

2
Now let us assume that the HF term dominates. This leads to an estimate

2F Ao 2FK K  o 04
IF2 A 3 X 10 A.
F2 A2 TrRAFll

The two are quite close. In fact, the value of q at which we assumed we were
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operating is close to the "break point" between the two extremes. As q - -1, the non-

linear term dominates.

When designing the feedback straps, a major consideration will be to minimize the

inductance, to avoid arcing during switching transients. This involves maximizing (20)
1 2

while minimizing the integral over Vo of 2 [oHF . We can see that a single wire, or

impulse of current, would cause very large local magnetic field energy and so is not a

good choice. To explore the modification, we assume KF to be distributed in a plane

parallel to the equilibrium plasma surface. Its Fourier components produce corre-

sponding components of magnetic field and, since they are orthogonal over the vacuum

region, their energies add. Thus, to minimize inductance, we want to distribute the

current sinusoidally to match the vector potential and surface perturbation. This is just

the distribution of current that occurs on the conducting sheath, a form of linear feed-

back. Thus the effect of the HF , Ho type of feedback is to make the conducting sheath

appear arbitrarily close to the plasma, as increasing the gain of a linear feedback sys-

tem, if such were contemplated. Its maximum effect is that of a wall as RW - a, and

this is the effect of bang-bang on the modes m = n = 1.
2

Note that the use of H F feedback lets us do even better, by stabilizing interchange

modes that are unaffected by a wall arbitrarily close to the plasma.

We also note that the spreading of feedback currents over a sinusoid results in a
A

decrease in effectiveness because not all the current is at maximum A. This will

roughly cancel the addition of terms in our calculation of current, if the current in a

strap is equated to the positive half-cycle of a sinusoid. The resulting inductance for

such a scheme is approximately 1. 3 X 107 H. Assuming the rise time of 1. 2 < 10-7 s,

this gives voltages of 33 kV during switching; difficult but not impossible to work with.

Thus, we would. design our feedback so that the currents flow just above flutes in

the surface (J X H r > 0). For 1-cm perturbations, we require that approximately

30, 000 A be switched in less than a tenth of a microsecond. This would be difficult, but

not impossible. Certainly at these currents, linear feedback would be far more diffi-

cult. Our experiment would look for increased confinement time, and check assumptions

that modes with fast spatial variations will be damped.

In conclusion, we can see that the analysis of nonlinear feedback to continuous sys-

tems is quite workable. It applies to some very important physical situations, and can

be used with various degrees of approximation. In application to Alcator, it appears

-feasible to use bang-bang feedback in order to allow lower values of q, while preserving

finite separation between plasma and conducting shell. The region of q-operation desired

will determine the feedback mode of operation.

The authors are grateful to Prof. James R. Melcher of the Department of Electrical

Engineering, M. I. T., for his advice and assistance in this work.

A. R. Millner, R. R. Parker
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2. ON THE REQUIREMENTS FOR FEEDBACK STABILIZATION

OF KINK MODES IN A CURRENT-CARRYING PLASMA

Introduction

In the last quarterly progress report1 a guiding center model of the kink instability

in a uniform current plasma cylinder was presented. By using this model, a stability

criterion was obtained which included the effects of external feedback currents. In this

report we shall consider a plasma in which the current is concentrated in a thin sheet

at the plasma vacuum boundary.

A stability criterion is derived by extending the analysis of a sheet pinch in a strong

longitudinal magnetic field presented by Kadomtsev 2 to include external feedback cur-

rents. We shall show that the feedback requirements for the m = 1 mode are the same

for both the uniform and thin-sheet current distributions.

Sheet Pinch

The cylindrical column, radius a, is immersed in a strong axial field BZ and separa-

rated from the feedback currents at r = b by a vacuum region. The surface current at

r = a produces the field

0 r<a

B { B a r (1)
B- r>a
a r

The field B z is uniform throughout the vacuum and plasma regions and is much larger

than B
a

To examine the stability of this configuration, we make a perturbation J,
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whose radial component at the boundary is

r=a = a exp(im -ikzz+yt) = a (2)
r=a o

The perturbed vacuum magnetic field is B = V , with V2 = 0. Solving the ideal MHD

equations and equating total pressure across the perturbed boundary determines a . Fol-

lowing Kadomtsev, we find for kza << 1 and an incompressible plasma

2 + k 2B 2  m a B 2 a (3)S z z a a a aa

a
where p is the mass density (assumed constant), "' - - Br, and 'a = 4j(r=a). The

left side of Eq. 3 is the internal gain of kinetic plus magnetic energy, and the right side

is the displacement times the pressure gradient owing to the perturbed magnetic field.

We require continuity of pressure across the perturbed boundary, which determines the

pressure gradient there and brings in the LPa ' term on the right-hand side of Eq. 3. We

can now modify aa to include the feedback currents.

The magnetic potential (for k za << 1) is approximately

rm (

where C 1 and C 2 are determined by boundary conditions. At r = a, B . V = 0, where

(r, 9, z) = r - a 0 is the perturbed surface. Since V = 1, a , + ik a ,

the "field freezing" condition (B * V4 = 0) is

m
a = B (r=a) = i a B (a) a - ik B (a) a = ik Ba, (4)a r a G a z z a Ha

where k - (mB a/a -kB )/B.

At r = b, 4' is continuous but the tangential field has a jump [ioKf, where Kf is the

feedback current and is of the form

im -ik z+yt
Kf = K e z

These two boundary conditions determine C l and C2:

-im C 2  oKf
b 2

and
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-im C 1 oKf
b 2

m a-b) k iBa

If we take a feedback current proportional to the boundary displacement, but opposed

to the direction of zero-order current, namely

Kf = -Ga or G = -Kfo/a (units of A/m 2 ) ,  (5)

we find that Eq. 4 becomes

ib [oG a
m 2

ma
Lkb!

ma
r + ]Wb]

ia k a B

mn l1 a r)

Using Eq. 6, we can compute the pressure gradient terms in Eq. 3.

m a a
a a -(k B) 2 a +I a

so that Eq. 3 becomes

p0oy + (kzB z ) + (kB)

Stability requires y2 < 0, or

)m-1 m
oGk B - > -

If we define q = aB /RBz a
can be written

(m-nq) [G ) 1
2 b)

B 2

a
2

m-l
kBpiG (a11 0 b a

mB 2  m-1

2 klBpoG
a

-(k2 - m Ba-k B
(z B z) a a z )

and k = n/R (with toroidal geometry in mind) the criterion
z

> kB
z z

m- 2-nqm ] (m-nq).
nq 2(m-nq)

The corresponding result for the uniform current distribution is1

SkB - m 1 (m-nq).
z z nq

To determine the stabilizing influence of a wall at r = b, rather than feed-

back currents, we choose the value of G which makes Br=b = 0 in order tor r=b

simulate a conducting wall. From Eq. 6, I = 0 if
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[0G (a/b)m+l

2 1 2m
1 - (a/b)

Substituting this value of G in Eq. 7 gives the correct wall stabilized growth rate3-5

mB 2  1 + (a/b) 2m
2 2 a 2

P Y + (kzBz) - (k lB) 2 m * (10)
a 1 - (a/b)

Discussion

We have derived the required gains to stabilize both the uniform and thin-sheet cur-

rent distributions. An interesting comparison can be made in terms of the vacuum

field Bf produced by the feedback coils in the absence of a plasma. Since the feedback

current is Kf = -G a, we find

o b m - 1

f(r a ) - Bfa 2 G a

In terms of this field, the feedback requirements are the following.

1. Uniform or thin-sheet current, m = 1 (mode unstable with q < 1 without feedback)

Bfa >(kza )B z .

2. Uniform current m > 2 (mode unstable with m - 1 < nq < m without feedback)

Bf > (kza B z(1 M1).
fa za 0 nq

For the sheet currents, m > 2 modes are stable (all q) without feedback.

From this comparison between the uniform and thin-sheet currents we see that the

criteria for stabilization of the higher order modes are dependent on the current distribu-

tion and on q. Criteria for feedback stabilization of the m = 1 mode, however, are the

same for these two distributions and independent of q (depending only on B and k which
6 z z

is fixed in toroidal geometry). Shafranov 6 has stated that the growth rate for the m = 1

mode is independent of current distribution. Hence we speculate that the feedback

requirements too are independent of current distribution for the m = 1 mode.

R. S. Lowder, K. I. Thomassen

References

1. R. S. I owder and 1\. I. Thoinas.cn, Qu a 't l Plro 'rss H porI No. 101, Hes'aI'ch rabo at y of 1'1ectronics, 1.I. T. . Ap 'il I
pp. 81-87.

2. B. 1. k adonitsev, H view ofI Plasma lPhsics, Vol. 2, Consultant Bure'au 9lt,, Se Equation 7. and 7. 5.

3. R. .Taylor,. Proc. Phys. Soc. (ILondon) 70B. 31 (1957).

4. V. ). Shatfranov, Plasma Phisis a n the I'roblm of Contr llcd Th erI moniuclear iEactions (I'ci gamoni Pr ss. I onldon, 159), \ol. 2.
p. 17 and Vol. 4, p. 171.

5. 1. I). Kirukal and it . 1_. Tuck, Proc. Rov. Soc. (London) A245, 222 (1958t.

6. V. I). Shafrao , Soiet Ihyc . Tcch. Ph\s. 15, 175 (1970).

QPR No. 102



VI. PLASMAS AND CONTROLLED NUCLEAR FUSION

F. High-Temperature Toroidal Plasmas

Academic and Research Staff

Prof. B. Coppi Prof. R. A. Blanken Dr. U. Daybelge

Dr. D. B. MontgomeryT Prof. R. J. Briggs Dr. R. Gajewski

Prof. G. Bekefi Prof. L. M. Lidsky Dr. P. A. Politzer

Prof. A. Bers Prof. R. R. Parker Dr. D. J. Sigmar
Prof. K. I. Thomassen

Graduate Students

E. L. Bernstein Y. Y. Lau E. N. Spithas

R. Dagazian M. A. Lecomte B. V. Waddell

D. P. Hutchinson A. R. Milner D. C. Watson
M. Simonutti

1. ALCATOR LOWER HYBRID-HEATING EXPERIMENT

Introduction

A unique feature of the M.I. T. Alcator experiment will be the application of a high-

power, S-band beam whose primary purpose will be to heat the plasma to temperatures

significantly higher than those attainable by ohmic heating. In addition to providing addi-

tional energy input, this experiment will give rise to related experiments that will

be of great interest. For example, by modulating microwaves it may be possible to

couple to low-frequency modes, thereby changing the population level of trapped par-

ticles. Also, by pulsing the radio frequency and observing the resulting energy rise and

decay times, it should be possible to make simple and direct measurement of these

important times. Finally, the presence of RF should enhance the classical plasma

resistivity, thereby increasing energy absorption from the confining current.

A scheme for plasma heating at the lower hybrid frequency was described several

years ago by Stix.1, 2 In this scheme RF energy excites a wave at the plasma boundary,

which then propagates nearly perpendicularly to the magnetic field. This wave, which

rapidly becomes electrostatic, is slowed down still further as it propagates into the

vicinity of the lower hybrid resonance.

The ultimate fate of the wave is still the subject of speculation; cold-plasma theory

predicts complete absorption, independent of the absorption mechanism. Stix has

pointed out that the wave can convert at the hybrid resonance to an ion plasma wave,

which might then be absorbed by cyclotron-harmonic damping or, as seems more likely,

This work was supported by the U. S. Atomic Energy Commission (Contract

AT(30 -1)-3980).

TDr. D. Bruce Montgomery is at the Francis Bitter National Magnet Laboratory.
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may be directly Landau-damped. There are other possibilities; for example, nonlinear

effects may completely dominate any linear absorption mechanism, or the wave may

bend and become a propagating mode parallel to the magnetic field. This question is

an interesting one for future work.

In this report we discuss some aspects of the proposed heating experiment. We

first re-examine the accessibility condition, that is, the criterion for insuring that the

wave approaches the resonance from a region of propagation rather than evanescence.

This condition was first given by Stix; however, we give a somewhat less stringent con-

dition. We calculate the impedance presented to an electromagnetic structure at the

lower hybrid frequency. The density gradient can act as an impedance transformer, with

the result that a reasonable impedance is presented to the structure. Finally, the mech-

anism by which the energy is transported to the resonant layer is investigated. We

find that for a gap excitation, the disturbance "propagates" nearly parallel to the mag-
1/2

netic field, at an angle ~(m/M) 1 . This is so because the group velocity is nearly per-

pendicular to the phase velocity, as it is for any electrostatic cold-plasma mode.

Accessibility Condition

The lower hybrid resonance is a wave resonance (as opposed to a particle resonance)

which occurs for a wave propagating essentially perpendicular to the magnetic field. For

most laboratory plasmas, the resonant frequency is well below electron cyclotron fre-

quency but well above ion cyclotron frequency. The resonant frequency is, in general,

a function of density and magnetic field, but for Alcator parameters occurs nearly at

the ion plasma frequency. Thus the heating scheme is to launch a wave at the liner, in

the region of low density from whence it propagates to the core of the Alcator plasma

where the energy can be absorbed at a point where the local ion-plasma frequency

becomes equal to the applied frequency. For the scheme to make sense, it is essential

that the wave be propagating, rather than evanescent, from the wall to the resonant

layer. This condition has been called by Stix the accessibility condition.

The question of accessibility can be handled appropriately by cold-plasma theory,

since, as we shall see, the phase velocity of the wave parallel to the magnetic field

is fast; that is, nearly c, while the wavelength perpendicular to the magnetic field is

large compared with either the ion or electron Larmor radius, except in the immediate

neighborhood of the resonance. Thus we first examine the dispersion equation for waves

in a cold plasma. This can be written in the form

n4K + n + Kil n -KL 2 + K = 0, (1)

2 2
where nx and n are components of the index of refraction perpendicular and parallel

x z
to the magnetic field, respectively, and K 1 , Kx and KII are the familiar components
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of the cold-plasma dielectric tensor. For frequencies well below the electron gyro

frequency, cee' but well above the ion gyro frequency wci' these quantities are given

by

2 2
pl pe

Kl- 1 - 2 2 (2a)
ce

2
co

pe
K x j (2b)

X co
ce

2
pe

K = 1- 2 (2c)

where 2 e (c ) is the electron (ion) plasma frequency. A wave resonance (infinity in
2 pe p

nx ) clearly occurs when K1 = 0, or from Eq. 2a, co = h' with

2 2
tO .Co

2 pl o

WCh 2 2 (3)
pl o

and

2
cW = C) ( .

O ce Cl

We note from Eq. 1 that the only other possible wave resonances occur when the

elements KI and Kx are infinite, that is, the ion and electron gyro frequencies. These

resonances, unlike the hybrid resonance, are associated with particle resonances; that

is, for finite electric field, the particle RF velocities are infinite. In the present

case, large particle velocities occur only because of a resonant electric field. Con-

sequently, nonlinear effects may be important in the ultimate disposition of the wave

energy.

For the Alcator plasma we expect

2 2
S z 10 2.,

o pi

so the resonant frequency is nearly equal to the ion plasma frequency. At a density of
14 -310 cm , this frequency is 2. 1 GHz, corresponding to a free -space wavelength of

2 2
~15 cm. The fact that the resonant frequency occurs at pi, rather than ,o' is important.
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An elementary calculation shows that the ratio of RF ion energy to RF electron energy
2 2 2 2 -1 2

in this frequency range is o/ . Since co z pi 10 Wo, the ion RF energy will

exceed that of the electrons by approximately an order of magnitude. Thus we hope

that a significant fraction of the wave energy will be deposited in the ions. Also, we

note that the location of the resonant frequency at an ion-plasma frequency in the micro-

wave region where the free-space wavelength is less than the diameter of the plasma

distinguishes the Alcator lower hybrid-heating experiment from all of the lower hybrid

work done thus far, in particular that of the Texas group.3

Returning to the accessibility question, we note from Eq. 1 that as K±- 0, the reso-

nant root is given by

K n -2 _ K
n - (4)x K 1

In approaching the lower hybrid resonance through values of density below the critical

value, that for which K 1 = 0, we observe that KI > 0 while both KI2 and K are nega-i x r e
tive. So a necessary condition for approaching the resonance from a region of propaga-

K 2

2 o
tion is n > where K and K are the values of K and K at the critical density.z K11  x o x 1

Detailed investigation reveals that this condition is not sufficient, since even if it is

satisfied, a region of complex waves, which carry no power, may be encountered

between the wall (zero density) and the resonant density.
2 2

In order to examine the dependence of n or n and density, we rewrite the elementsx z
of the dielectric tensor in the form

1 =l-n

Kx j n (5)

K 1 - an,

2
(o

pe 0
where n = n/n o , the ratio of density to critical density, p - 2 a and a =

2 oce

M 1+ 2 where w2 is the electron plasma frequency evaluated at the resonant
m 2 pe0

ce 1
layer, and M/m is the mass ratio. For Alcator parameters, P 10 - a and a is essen-

tially the mass ratio.
2

The solution. of Eq. 1 sketched vs n with n as a parameter is shown qualitatively
z
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2in Fig. VI-9. In Fig. VI-9a the solution is shown first for n = 0, in which case thez
dispersion equation factors into the ordinary and extraordinary modes

2
n K = 1 - anxo II

2 2
K + K .22 1  x n

xe K P-
I 1 -n

Since -~ 15, the extraordinary mode is cut off in most of the plasma up to the reso-

nant layer ('<1). Consequently, there would be little hope for using this branch to heat

the plasma directly. [In fact, the tunneling factor is of the order of

x
- fo kx dx

e

where xo is the position of the resonance. For a linear density profile this factor is
-ax

o
e , where

I 4k
a k x dx = o4k

0 o-x 3

with k = c/c. If x is near the center of the machine, k x ~ 2rr, and since f= 15,
0 o -120 2

the tunneling factor is ~e !] As nz is increased, a coupling between the ordinary

and extraordinary modes takes place near the resonance as shown. Finally, at a

2 P 2critical value, n = a , the resonance is approached through positive values of nx for

n < 1, as predicted by Eq. 4. This behavior is shown schematically in Fig. VI-9b. Note
2

the absence of real nx solutions for regions of n. The solutions here are complex, indi-
2cating complex waves that carry no power. Finally, for larger n , the solution has

2 z
the appearance shown in Fig. VI-9c. The value of n 2 which causes this transition can

z
2

be found by demanding from Eq. 1 that the solution for n be real. This requiresx

(K +KL)(n -KL )-K 2 2-4K K (n2-K )2 +K2 > 0 .

2
The left-hand side of this inequality, regarded as a function of n z is a concave-upward

2
parabola. The inequality will therefore be satisfied if n is greater than the largest

zero of this function which requires

2 K (K +K + K 4 (K+K) 2  K 4KIKIK (K K 2
n > max K1 +

n < 1 (KII -KI)

QPR No. 102 102



(VI. PLASMAS AND CONTROLLED NUCLEAR FUSION)

Substituting Eq. 5, neglecting terms of order m/M compared with unity, and using the

fact that p/a2 << 1 yields

2 ~ 4 ~ 4P 1
n > max 1 - 1 - -  S+  - ( 1-n ,-  .

n <1I

Since p < a, and a >> 1, a sufficient condition for eliminating complex waves is

n >1 +> . (6)

2

For Alcator, this requires n2 > 1. 3, which is a little less restrictive than the condition

given by Stix, which for this case is n z > 2 1 + When Eq. 6 is satisfied, the solu-

tion of the dispersion equation has the appearance shown in Fig. VI-9c. Note that for

very small n, a small region of evanescence is found in the resonant mode because at

zero density evanescent waves must occur for n > 1. This may be investigated by neg-
2 2 z

lecting K (which is proportional to n ) in Eq. 1 and then factoring to obtain

( +n2-K1 (n
2 Kl+K(nz-K)L) = 0. (7)

The mode of interest is that associated with the second factor. Hence, for very low

density,

K(n -Ki2
n = - (8)
x K

-1
For n greater than a , KII < 0, and the mode becomes propagating. For moderate

2 2
n (>Z), nx is adequately given by Eq. 8 right into the resonance region, providing

2 2
2 << c  . In fact, near resonance, from Eq. 1,
pe ce

2
nx K.

which is equivalent to Eq. 8, since K << K ( <<a).

To summarize, we find that addition of a relatively small component of wave

number parallel to the field allows the mode to propagate parallel to the den-

sity gradient and into the resonant zone. Although there is a region of evanes-
-1 m

cence, it is very small, occurring for n < a or n < n o , where n is the resonant

density.
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Finally, let us inquire into the polarization of this mode. The fields are given by

n n
E z x E (9a)

n -K

and

-K
E 2 2 E. (9b)

Sn +n -K x
x z I

In the low-density limit for which the dispersion equation factors as given in Eq. 7, the

modes separate with only E nonzero for the mode corresponding to the first factor,

and only E and E nonzero for the mode associated with the second factor. As the lat-x z
ter mode is the resonant mode, this implies that the launching structure should create

an electric field parallel to the plane determined by k and B. This is somewhat sur-

prising because, with n = 0, the resonant mode (extraordinary mode) has E perpendicu-

lar to k and B. Physically this is due to the profound influence of electron currents

flowing parallel to the magnetic field which are induced when k has a component par-

allel to B.

Coupling Impedance

These results suggest that the heating mode should be launched from a coupling struc-

ture having most of its spectral energy in wave numbers such that nz > 1. Also, the
z

polarization should be such as to launch a mode with E parallel to the plane of B and

k. We shall now calculate the impedance of such a structure, in order to see if launching

from an electromagnetic structure is feasible.

The problem to be considered is illustrated in Fig. VI-10, which shows a cold

X

vn

B• " ::." ":.' :." .:" .': : .. .. : .- ...-: .. -.. ..... .... ... .. . ..:...;.;:. ...........: ....... ::: :: . :

Fig. VI-10. Schematic illustration of the problem.
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plasma bounded by a plane at x = 0 along which the electric field Ez(z, x = 0) is specified.
-ik z k c

z z
We assume E = E e , where > 1. 15, in accordance with the accessibility con-

z o W

dition. We also assume that the density increases monotonically from zero at the plane

x = 0 to a maximum value exceeding that at which hybrid resonance will occur. The

problem is to solve for the electric field, subject to a radiation condition, that is,

energy propagating toward the resonance zone where it will be absorbed by some unspec-

ified process.

The complete problem is far too difficult to solve analytically, so we shall attempt

an approximate solution. Our approach will be to neglect the Kx term in the dielectric

tensor, which allows dicoupling of the two modes according to their initial polarization.

This seems justified, since Kx can be ignored in the local dispersion relation for the

resonant mode. If necessary, corrections arising from the Kx term could be calculated,

but we shall not attempt this here.

By neglecting Kx , we can derive the following equation for Ez

n n KI
E" - k2 K z 1 E + 2 z E 0 E' 0, (10)

22 zz oK KjIz o 2-K z
z I

where primes refer to derivatives with respect to x and ko = c/c. We neglect the last
Vn 0

term in this equation since it is of order k n , which will turn out to be much less
x

than one. The WKB solution to Eq. 10 will then be adequate except where KII - 0 and

K-I 0. The latter point is the resonance, and it is known that the solution near this

point is a single propagating wave, propagating into the resonance layer and being com-

pletely absorbed there. Within the framework of cold-plasma theory, this result is

independent of the absorption mechanism. We expect hot-plasma theory to reveal a con-

version to an extremely short wavelength ion plasma mode, along the lines suggested

by Stix. At present, we do not concern ourselves with the absorption mechanism, but

concentrate on the solution in the neighborhood of K 1 = 0, subject to the boundary con-

ditions of specified E at x = 0 and outgoing waves, in the group velocity sense, on the
z

propagating side of the cutoff layer.

In the region where KI = 0, the density will be approximated as linear, so that K11 =

K lo(x-a), where a is the point at which KII = 0. Also, KI can be taken to be unity
- 1

here because n - << 1. Then Eq. 10 becomes

E" + v2(x-a) E = 0, (11)
z z

where = -k2K (n2-1). The general solution to Eq. 11 is E = e v 2 3 (x-xo

where
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e(z) = K 1 Ai(-z) + K 2 Bi(-z),

and Ai and Bi are the Airy functions. For negative real arguments these functions have

the asymptotic forms

Ai(-z) - 1 sin (4+Tr/4)

1/2zl/4

Bi(-z) - 1 cos (+rr/4),

I1/2zl/4

2 3/2
with = z Since the local solution to Eq. 10 is a backward wave, the appropriate

boundary condition for large x is K 1 = jK 2 . Application of the boundary condition of

prescribed field amplitude at x = 0 then determines K 1 and K 2 uniquely. Of more

interest is the coupling impedance, T, defined as the ratio of E to -H at the boundary,
z y

x = 0. From Maxwell's equations H is found to be related to E by
y z

H o E,
y 1 -n 2/K z

zi

Jo( n z - 1 Bi(Z) + jAi(Z)

2/3 Bi'(Z) + jAi'(Z)

where Z = v 2 / 3 a. In terms of the parameters,

Z = 2K'a n -1) /3
o- z

Inserting typical values, we find Z ~

of the Airy functions is appropriate.

0(Z 3 ), where cl 0. 355 and c 2 = 0.

10 - 10-1

Using Ai(Z)

259, we get,

Hence small-argument expansion

c 1 - cZ + 0(Z3), Bi(Z) 3-cl Z +

to order Z,

2_1)

k ~o n 2-1) ]

o (n z
'] :

3 + j c 1F 3j c2L 3-
+Z.

Hence
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Sn2_1 3 cl
Re =

0-1

where ro =i/E = 377 2. Inserting reasonable values for the parameters, Re T

turns out to be of the order of 50 2. Note that although KI' l o is not known accurately, the

third power makes the impedance relatively insensitive to the density scale length. We

note also that the impedance is capacitive, having an angle of -30' for Z << 1.

Finally, we calculate the electric field, given a boundary condition of specified elec-

tric field at x = 0. We have

E = K 2 (Bi(v /3(a-x))+ jAi(v /3(a-x))).

-ik zz
Setting x = 0 and E (z, x= 0) = E e we have

z o

-ik z
Ee z

K =
2 ( -+j)c

The asymptotic form then becomes

-ik z

- Eo j 2/3 v (x- a)3/2
E - e

(+j) c 1/2 v 1/6(x-a)1/4

-ik z 1/3
E e v 1 j fXk dx

o 1 a x (12)

(\ +j) c 1/2 k1/2

1/2
where k = v(x-a) , which is recognized as the WKB form.

x

Propagation from a Gap

As we have mentioned, the ultimate energy absorption mechanism is still open to

question. Even before the energy propagates into the resonance region, it is possible

for the pulse to propagate in a rather tortuous path. This is a manifestation of the fact

that the group velocity of this mode turns out to be perpendicular to the phase velocity.

Since the phase velocity is nearly perpendicular to the magnetic field, the group or

energy velocity is nearly parallel to the field. This observation is a warning of the
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somewhat surprising result that the energy propagates a long distance parallel to the

magnetic field before being absorbed at. the resonance layer.

Let us first calculate the group velocity V . In anisotropic media, V is given by
g g

aw/8k. From Eq. 8,

-K2 I-KI 2 2
k -- k + k K

x K± z o I1

We have seen that k2 must exceed k2 and also KI < 1, so let us neglect the second term
z 0

to obtain

2 II 2
k K-k (13)

x KI z

which is recognized as the quasi-static dispersion relation. By carrying out the calcu-

lation for group velocity we get

2kx/k z  A

g 2 (_ Kil (yk)

with the prime denoting differentiation with respect to c. Hence the group velocity is

perpendicular to the phase velocity. Also, since (-K I/K)' < 0, kx must be negative

so that energy will propagate away from the wall toward the resonant layer. Hence

the mode is a backward wave. We note that at resonance, V - 0 because, although
2 2 g

k - c, (K /K)'- cc and dominates k x

Let us consider this effect in more detail. From Eq. 12 we have, for large x,

1/3 ifx k dxE(0, k ) v 1 x x
z 1 e

1 x

1//3Using the dispersion relation (13), and noting that in the same approximation v1/
k / 3 , by undoing the Fourier transform, we get

o E(0, k ) jk (z-G(x))
1z z

z

1 o E(0, k ) jk (z+G(x))
+ 1 dk k e z(14)

z kl/6
z
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where

1/6
(-k 2 K 1 /4(o IioK

C(x) -r 2( -K11

( +j) c 1 1/

and

G(x) = dx.

The first term in braces in Eq. 14 is constant along curves given by

z = zo + dx.

o

This curve is precisely that predicted by following the group velocity from point x =

x o , z = zo. This is seen to be true because this trajectory is obtained by solving dx X

V = 0, or, since k is perpendicular to Vg,

k • dx = k dx + k dz = 0.
x z

Hence

x -k x dx + z

x z x
O O

Similarly, the second term in braces is constant along the curve z = -G(x) + z o . Note

that in a uniform plasma these curves are straight lines with slope ~m/M with respect

to the magnetic field. This corresponds to "propagation" ~1 1/2 times around the

Alcator torus before reaching the resonant layer.

Let us calculate the form of the electric field from Eq. 14. Considering the first

term in braces, we wish to find g(u) defined as

1 0 E(0, kZ ejku
g(u) dk e

21 -a Z kl/6
z

If the integration were from -oc to +cc, g(u) would be essentially the inverse Fourier

transform of E (the singularity at k = 0 is of no consequence, since E = 0 for
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k < k ). Let us denote this function f(u). Then it can be shown that

g(u) = 1 fu') du',2Trj C -UU

where the contour C extends from -' to +oc, passing above the point u.

real u,

1
g(u) = - f(u) +

Hence, for

j ' f(u')
P \ du'.

(u'-u)

For a gap excitation, E(x = 0, z) would be as shown in Fig. VI-lla. Now E(0, k z ) is

the Fourier transform of E(0, z), but void of wave numbers less than k , since these0

E

-7
w/2 -w/2

(a)

f(u)

--
0

_u

w/2

(b)

Fig. VI-11. (a) A gap electric field and (b)
wave-number components have

-w/2

Re g

T E/2

w/2

(a)

its appearance after low
been removed.

Im g

(b)

Fig. VI-12. (a) Real and (b) imaginary parts of the asymptotic electric
field resulting from the excitation shown in Fig. VI-11a.

-w/2
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wave numbers cannot propagate. For k W << 2, that is, W <<X, this has the effect of

removing a small constant component from E, so that the function f(u) has the appear-

ance shown in Fig. VI-11lb (it becomes oscillatory for u > X). Consequently, g(u) is

as shown in Fig. VI-12. For this excitation, we find the presence of a logarithmic sin-

gularity in the electric field. Similar effects have been predicted previously by Keuhl, 4

and observed experimentally by Fisher and Gould.5 Hence we anticipate that strong

RF fields may pervade the entire torus, even though the excitation is highly localized.

Also, the axial electric field strength should be enhanced over its value in the gap,

although we would expect the logarithmic singularity predicted here to be washed out by

collisional processes. The absorption mechanism and the nature of fields near the reso-

nance layer remain to be investigated.

R. R. Parker
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