36 research outputs found
Breakdown of the Kondo Effect in Critical Antiferromagnets
The breakdown of the Kondo effect may be the origin of the anomalous
properties of the heavy-fermion compounds at low temperatures. We study the
dynamics of one impurity embedded in an antiferromagnetic host at the quantum
critical point and show that the impurity is not screened and develops a power
law correlation function. This suggests that the breakdown of the Kondo effect
can simply be a consequence of the system's proximity to the quantum critical
point.Comment: To appear in Physical Review B (Brief Reports
Spin-fluctuations in the quarter-filled Hubbard ring : significances to LiVO
Using the quantum Monte Carlo method, we investigate the spin dynamics of
itinerant electrons in the one-dimensional Hubbard system. Based on the model
calculation, we have studied the spin-fluctuations in the quarter-filled
metallic Hubbard ring, which is aimed at the vanadium ring or chain defined
along corner-sharing tetrahedra of LiVO, and found the dramatic changes
of magnetic responses and spin-fluctuation characteristics with the
temperature. Such results can explain the central findings in the recent
neutron scattering experiment for LiVO.Comment: 5 pages, 3 figure
Scaling approach to itinerant quantum critical points
Based on phase space arguments, we develop a simple approach to metallic
quantum critical points, designed to study the problem without integrating the
fermions out of the partition function. The method is applied to the
spin-fermion model of a T=0 ferromagnetic transition. Stability criteria for
the conduction and the spin fluids are derived by scaling at the tree level. We
conclude that anomalous exponents may be generated for the fermion self-energy
and the spin-spin correlation functions below , in spite of the spin fluid
being above its upper critical dimension.Comment: 3 pages, 2 figures; discussion of the phase space restriction
modified and, for illustrative purposes, restricted to the tree-level
analysis of the ferromagnetic transitio
Small Fermi surface in the one-dimensional Kondo lattice model
We study the one-dimensional Kondo lattice model through the density matrix
renormalization group (DMRG). Our results for the spin correlation function
indicate the presence of a small Fermi surface in large portions of the phase
diagram, in contrast to some previous studies that used the same technique. We
argue that the discrepancy is due to the open boundary conditions, which
introduce strong charge perturbations that strongly affect the spin Friedel
oscillations.Comment: 5 pages, 7 figure
Metamagnetic Quantum Criticality in Sr3Ru2O7
We consider the metamagnetic transition in the bilayer ruthenate, , and use this to motivate a renormalization group treatment of a zero-temperature quantum-critical end-point. We summarize the results of mean field theory and give a pedagogical derivation of the renormalization-group equations. These are then solved to yield numerical results for the susceptibility, the specific heat and the resistivity exponent which can be compared with measured data on to provide a powerful test for the standard framework of metallic quantum criticality. The observed approach to the critical point is well-described by our theory explaining a number of unusual features of experimental data. The puzzling behaviour very near to the critical point itself, though, is not accounted for by this, or any other theory with a Fermi surface
Non-Fermi liquid regime of a doped Mott insulator
We study the doping of a Mott insulator in the presence of quenched
frustrating disorder in the magnetic exchange. A low doping regime
is found, in which the quasiparticle coherent scale is low : with (the ratio of typical exchange to
hopping). In the ``quantum critical regime'' , several
physical quantities display Marginal Fermi Liquid behaviour : NMR relaxation
time , resistivity , optical lifetime
\tau_{opt}^{-1}\propto \omega/\ln(\omega/\epstar) and response functions obey
scaling, e.g. .
In contrast, single-electron properties display stronger deviations from Fermi
liquid theory in this regime with a dependence of the inverse
single-particle lifetime and a decay of the photoemission
intensity. On the basis of this model and of various experimental evidence, it
is argued that the proximity of a quantum critical point separating a glassy
Mott-Anderson insulator from a metallic ground-state is an important ingredient
in the physics of the normal state of cuprate superconductors (particularly the
Zn-doped materials). In this picture the corresponding quantum critical regime
is a ``slushy'' state of spins and holes with slow spin and charge dynamics
responsible for the anomalous properties of the normal state.Comment: 40 pages, RevTeX, including 13 figures in EPS. v2 : minor changes,
some references adde
Magnetic polarons in weakly doped high-Tc superconductors
We consider a spin Hamiltonian describing - exchange interactions
between localized spins of a finite antiferromagnet as well as -
interactions between a conducting hole () and localized spins. The spin
Hamiltonian is solved numerically with use of Lanczos method of
diagonalization. We conclude that - exchange interaction leads to
localization of magnetic polarons. Quantum fluctuations of the antiferromagnet
strengthen this effect and make the formation of polarons localized in one site
possible even for weak - coupling. Total energy calculations, including
the kinetic energy, do not change essentially the phase diagram of magnetic
polarons formation. For parameters reasonable for high- superconductors
either a polaron localized on one lattice cell or a small ferron can form. For
reasonable values of the dielectric function and - coupling, the
contributions of magnetic and phonon terms in the formation of a polaron in
weakly doped high- materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure
Polaron formation for a non-local electron-phonon coupling: A variational wave-function study
We introduce a variational wave-function to study the polaron formation when
the electronic transfer integral depends on the relative displacement between
nearest-neighbor sites giving rise to a non-local electron-phonon coupling with
optical phonon modes. We analyze the ground state properties such as the
energy, the electron-lattice correlation function, the phonon number and the
spectral weight. Variational results are found in good agreement with analytic
weak-coupling perturbative calculations and exact numerical diagonalization of
small clusters. We determine the polaronic phase diagram and we find that the
tendency towards strong localization is hindered from the pathological sign
change of the effective next-nearest-neighbor hopping.Comment: 11 page
Transitions from small to large Fermi momenta in a one-dimensional Kondo lattice model
We study a one-dimensional system that consists of an electron gas coupled to
a spin-1/2 chain by Kondo interaction away from half-filling. We show that
zero-temperature transitions between phases with "small" and "large" Fermi
momenta can be continuous. Such a continuous but Fermi-momentum-changing
transition arises in the presence of spin anisotropy, from a Luttinger liquid
with a small Fermi momentum to a Kondo-dimer phase with a large Fermi momentum.
We have also added a frustrating next-nearest-neighbor interaction in the spin
chain to show the possibility of a similar Fermi-momentum-changing transition,
between the Kondo phase and a spin-Peierls phase, in the spin isotropic case.
This transition, however, appears to involve a region in which the two phases
coexist.Comment: The updated version clarifies the definitions of small and large
Fermi momenta, the role of anisotropy, and how Kondo interaction affects
Luttinger liquid phase. 12 pages, 5 figure
Ordering and Fluctuation of Orbital and Lattice Distortion in Perovskite Manganese Oxides
Roles of orbital and lattice degrees of freedom in strongly correlated
systems are investigated to understand electronic properties of perovskite Mn
oxides such as La_{1-x}Sr_{x}MnO_{3}. An extended double-exchange model
containing Coulomb interaction, doubly degenerate orbitals and Jahn-Teller
coupling is derived under full polarization of spins with two-dimensional
anisotropy. Quantum fluctuation effects of Coulomb interaction and orbital
degrees of freedom are investigated by using the quantum Monte Carlo method. In
undoped states, it is crucial to consider both the Coulomb interaction and the
Jahn-Teller coupling in reproducing characteristic hierarchy of energy scales
among charge, orbital-lattice and spin degrees of freedom in experiments. Our
numerical results quantitatively reproduce the charge gap amplitude as well as
the stabilization energy and the amplitude of the cooperative Jahn-Teller
distortion in undoped compounds. Upon doping of carriers, in the absence of the
Jahn-Teller distortion, critical enhancement of both charge compressibility and
orbital correlation length is found with decreasing doping concentration. These
are discussed as origins of strong incoherence in charge dynamics. With the
Jahn-Teller coupling in the doped region, collapse of the Jahn-Teller
distortion and instability to phase separation are obtained and favorably
compared with experiments. These provide a possible way to understand the
complicated properties of lightly doped manganites.Comment: 22 pages RevTeX including 25 PS figures, submitted to Phys.Rev.B,
replaced version; two figures are replaced by Fig.17 with minor changes in
the tex
