7 research outputs found

    A metallic multisite recording system designed for continuous long-term monitoring of electrophysiological activity in slice cultures

    No full text
    This paper describes a flexible, metallic multielectrode array, made on kapton to fit in a recording chamber for interface-type organotypic cultures. This multisite recording system is designed for continuous multisite monitoring of electrophysiological activity in rat brain organotypic slice cultures. The system is composed of a signal conditioning set-up, which also masters electrical stimulation paradigms and a card containing the microelectrode array. The card comprises a perfusion chamber closed by a rigid and permeable membrane on which the pierced microelectrode array supporting the slice culture is placed. Once closed with a gaseous chamber, the inside of the card remained sterile and free of contamination and could be maintained inside or outside the incubator for electrophysiological analyses. Dimensions of each 28-plated gold microelectrode recording site are 50 microns x 100 microns. The design of the chambers and the card makes it possible to modify both the perfusion medium and the gaseous atmosphere in sterile conditions, allowing thus analyses of long-term effects of pharmacological compounds. Using this array one can perform stimulation and recordings of the electrical activity of the slice. Signals obtained with this reusable system exhibit a good signal-to-noise ratio. This device was tested to follow the evolution and modifications of the evoked and/or spontaneous electrical activity of the same groups of neurones during several days

    A simple, low-cost and fast Peltier thermoregulation set-up for electrophysiology

    No full text
    Most of the parameters recorded in electrophysiology are strongly temperature dependent. In order to control temperature fluctuations we have built a system that ensures an accurate thermoregulation of the recording chamber. Temperature of physiological preparations can be changed relatively quickly (about 8°C/min) and with a good accuracy (±0.5°C) without inducing thermal oscillations. Contrary to other thermoregulating devices, the temperature regulation is not carried out through the perfused medium but directly at the bottom of the chamber where a 3-cm2 Peltier element has been placed. The element is driven by a dedicated electronic device which controls the amount and the direction of the current flowing across the Peltier thermocouple. All construction details and the appropriate electrical circuits are provided. Using this home-made device, the steady-state chamber temperature could be precisely monitored with a resolution of ±0.1°C in a range of 0–40°C. This set-up was tested in experiments designed to evaluate the temperature dependence of synaptic transmission in the Torpedo nerve–electroplate synapses and of calcium currents recorded from isolated nerve cells. This low-cost method is suitable for a wide range of applications.</p
    corecore