29 research outputs found

    Toward a more comprehensive assessment of school age children with hemiplegic cerebral palsy

    Get PDF
    BACKGROUND: Cerebral palsy (CP) is the leading cause of disability in children. While motor deficits define CP, many patients experience behavioral and cognitive deficits which limit participation. The purpose of this study was to contribute to our understanding of developmental delay and how to measure these deficits among children with CP. METHODS: Children 5 to 15 years with hemiplegic CP were recruited. Cognition and motor ability were assessed. The brain injury associated with observed motor deficits was identified. Accelerometers measured real-world bilateral upper extremity movement and caregivers completed behavioral assessments. RESULTS: Eleven children participated, 6 with presumed perinatal stroke. Four children scored below average intelligence quotient while other measures of cognition were within normal limits (except processing speed). Motor scores confirmed asymmetrical deficits. Approximately one third of scores indicated deficits in attention, behavior, or depression. CONCLUSIONS: Our findings corroborate that children with CP experience challenges that are broader than motor impairment alone. Despite the variation in brain injury, all participants completed study procedures. IMPLICATIONS: Our findings suggest that measuring behavior in children with CP may require a more comprehensive approach and that caregivers are amenable to using online collection tools which may assist in addressing the therapeutic needs of children with CP

    Diversity of Zoanthids (Anthozoa: Hexacorallia) on Hawaiian Seamounts: Description of the Hawaiian Gold Coral and Additional Zoanthids

    Get PDF
    The Hawaiian gold coral has a history of exploitation from the deep slopes and seamounts of the Hawaiian Islands as one of the precious corals commercialised in the jewellery industry. Due to its peculiar characteristic of building a scleroproteic skeleton, this zoanthid has been referred as Gerardia sp. (a junior synonym of Savalia Nardo, 1844) but never formally described or examined by taxonomists despite its commercial interest. While collection of Hawaiian gold coral is now regulated, globally seamounts habitats are increasingly threatened by a variety of anthropogenic impacts. However, impact assessment studies and conservation measures cannot be taken without consistent knowledge of the biodiversity of such environments. Recently, multiple samples of octocoral-associated zoanthids were collected from the deep slopes of the islands and seamounts of the Hawaiian Archipelago. The molecular and morphological examination of these zoanthids revealed the presence of at least five different species including the gold coral. Among these only the gold coral appeared to create its own skeleton, two other species are simply using the octocoral as substrate, and the situation is not clear for the final two species. Phylogenetically, all these species appear related to zoanthids of the genus Savalia as well as to the octocoral-associated zoanthid Corallizoanthus tsukaharai, suggesting a common ancestor to all octocoral-associated zoanthids. The diversity of zoanthids described or observed during this study is comparable to levels of diversity found in shallow water tropical coral reefs. Such unexpected species diversity is symptomatic of the lack of biological exploration and taxonomic studies of the diversity of seamount hexacorals

    Using synthetic MR images for distortion correction

    Get PDF
    Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information

    CONTRA: copy number analysis for targeted resequencing

    Get PDF
    Motivation: In light of the increasing adoption of targeted resequencing (TR) as a cost-effective strategy to identify disease-causing variants, a robust method for copy number variation (CNV) analysis is needed to maximize the value of this promising technology

    Real-time motion monitoring improves functional MRI data quality in infants

    Get PDF
    Imaging the infant brain with MRI has improved our understanding of early neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are typically scanned while asleep, they commonly exhibit motion during scanning causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Here, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2 mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging

    Accuracy and reliability of diffusion imaging models

    Get PDF
    Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain\u27s white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL\u27s BedpostX [BPX], DSI Studio\u27s Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3\u27s Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI

    How Plastic Can Phenotypic Plasticity Be? The Branching Coral Stylophora pistillata as a Model System

    Get PDF
    Phenotypic plasticity enables multicellular organisms to adjust morphologies and various life history traits to variable environmental challenges. Here, we elucidate fixed and plastic architectural rules for colony astogeny in multiple types of colonial ramets, propagated by cutting from genets of the branching coral Stylophora pistillata from Eilat, the Red Sea. We examined 16 morphometric parameters on 136 one-year old S. pistillata colonies (of seven genotypes), originating from small fragments belonging, each, to one of three single-branch types (single tips, start-up, and advanced bifurcating tips) or to structural preparative manipulations (representing a single or two growth axes). Experiments were guided by the rationale that in colonial forms, complexity of evolving phenotypic plasticity can be associated with a degree of structural modularity, where shapes are approached by erecting iterative growth patterns at different levels of coral-colony organization. Analyses revealed plastic morphometric characters at branch level, and predetermined morphometric traits at colony level (only single trait exhibited plasticity under extreme manipulation state). Therefore, under the experimental manipulations of this study, phenotypic plasticity in S. pistillata appears to be related to branch level of organization, whereas colony traits are controlled by predetermined genetic architectural rules. Each level of organization undergoes its own mode of astogeny. However, depending on the original ramet structure, the spherical 3-D colonial architecture in this species is orchestrated and assembled by both developmental trajectories at the branch level, and traits at the colony level of organization. In nature, branching colonial forms are often subjected to harsh environmental conditions that cause fragmentation of colony into ramets of different sizes and structures. Developmental traits that are plastic, responding to fragment structure and are not predetermine in controlling astogeny, allow formation of species-specific architecture product through integrated but variable developmental routes. This adaptive plasticity or regeneration is an efficient mechanism by which isolated fragments of branching coral species cope with external environmental forces

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    Identifying reproducible individual differences in childhood functional brain networks: An ABCD study

    Get PDF
    The 21-site Adolescent Brain Cognitive Development (ABCD) study provides an unparalleled opportunity to characterize functional brain development via resting-state functional connectivity (RSFC) and to quantify relationships between RSFC and behavior. This multi-site data set includes potentially confounding sources of variance, such as differences between data collection sites and/or scanner manufacturers, in addition to those inherent to RSFC (e.g., head motion). The ABCD project provides a framework for characterizing and reproducing RSFC and RSFC-behavior associations, while quantifying the extent to which sources of variability bias RSFC estimates. We quantified RSFC and functional network architecture in 2,188 9-10-year old children from the ABCD study, segregated into demographically-matched discovery (N = 1,166) and replication datasets (N = 1,022). We found RSFC and network architecture to be highly reproducible across children. We did not observe strong effects of site; however, scanner manufacturer effects were large, reproducible, and followed a short-to-long association with distance between regions. Accounting for potential confounding variables, we replicated that RSFC between several higher-order networks was related to general cognition. In sum, we provide a framework for how to characterize RSFC-behavior relationships in a rigorous and reproducible manner using the ABCD dataset and other large multi-site projects
    corecore