176 research outputs found

    Proteomic analyses reveal misregulation of LIN28 expression and delayed timing of glial differentiation in human iPS cells with MECP2 loss-of-function.

    Get PDF
    Rett syndrome (RTT) is a pervasive developmental disorder caused by mutations in MECP2. Complete loss of MECP2 function in males causes congenital encephalopathy, neurodevelopmental arrest, and early lethality. Induced pluripotent stem cell (iPSC) lines from male patients harboring mutations in MECP2, along with control lines from their unaffected fathers, give us an opportunity to identify some of the earliest cellular and molecular changes associated with MECP2 loss-of-function (LOF). We differentiated iPSC-derived neural progenitor cells (NPCs) using retinoic acid (RA) and found that astrocyte differentiation is perturbed in iPSC lines derived from two different patients. Using highly stringent quantitative proteomic analyses, we found that LIN28, a gene important for cell fate regulation and developmental timing, is upregulated in mutant NPCs compared to WT controls. Overexpression of LIN28 protein in control NPCs suppressed astrocyte differentiation and reduced neuronal synapse density, whereas downregulation of LIN28 expression in mutant NPCs partially rescued this synaptic deficiency. These results indicate that the pathophysiology of RTT may be caused in part by misregulation of developmental timing in neural progenitors, and the subsequent consequences of this disruption on neuronal and glial differentiation

    Precise measurements help gauge Pacific Northwest\u27s Earthquake potential

    Get PDF
    Except for the recent rumblings of a few moderate earthquakes and the eruption of Mt. St. Helen\u27s, all has been relatively quiet on the Pacific Northwestern front. The Cascades region in the Pacific Northwest, a sporadically active earthquake and volcanic zone, still has great seismic potential [Atwater, 1987], as comparisons with other subduction zones around the world have shown [Heaton and Kanamori, 1984]. Recent tsunami propagation models [Satake, 1996] and tree ring studies suggest that the last great Cascadia earthquake occurred in the winter of 1700 A.D. and had a magnitude of −8.9. The North Cascades or Wenatchee earthquake followed in 1872. With an estimated magnitude greater than 7, it was the largest earthquake in the written history of Washington and Oregon

    Quantifying regional α -synuclein, amyloid β, and tau accumulation in Lewy body dementia

    Get PDF
    OBJECTIVE: Parkinson disease (PD) is defined by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies and Lewy neurites. It affects multiple cortical and subcortical neuronal populations. The majority of people with PD develop dementia, which is associated with Lewy bodies in neocortex and referred to as Lewy body dementia (LBD). Other neuropathologic changes, including amyloid β (Aβ) and tau accumulation, occur in some LBD cases. We sought to quantify α-syn, Aβ, and tau accumulation in neocortical, limbic, and basal ganglia regions. METHODS: We isolated insoluble protein from fresh frozen postmortem brain tissue samples for eight brains regions from 15 LBD, seven Alzheimer disease (AD), and six control cases. We measured insoluble α-syn, Aβ, and tau with recently developed sandwich ELISAs. RESULTS: We detected a wide range of insoluble α-syn accumulation in LBD cases. The majority had substantial α-syn accumulation in most regions, and dementia severity correlated with neocortical α-syn. However, three cases had low neocortical levels that were indistinguishable from controls. Eight LBD cases had substantial Aβ accumulation, although the mean Aβ level in LBD was lower than in AD. The presence of Aβ was associated with greater α-syn accumulation. Tau accumulation accompanied Aβ in only one LBD case. INTERPRETATION: LBD is associated with insoluble α-syn accumulation in neocortical regions, but the relatively low neocortical levels in some cases suggest that other changes contribute to impaired function, such as loss of neocortical innervation from subcortical regions. The correlation between Aβ and α-syn accumulation suggests a pathophysiologic relationship between these two processes

    Everyone on Radio

    Full text link
    This adaptation of Everyman was scheduled for production on the main stage in the Kline Theatre of Gettysburg College. With the onset of COVID-19 and the ensuing advent of distance-learning, that could no longer happen, and originally that was a crushing disappointment. But the show must go on, especially when that show is “Everyman,” an especially apt theatrical choice for a pestilential year. Everyman offers exciting possibilities for audio drama, especially considering the play’s emphasis on the internal struggle of the individual facing death; Everyone on Radio attempts to make the most of these aspects of the play. Never willing to blink in the face of doom, the students in this class rose to the occasion with incredible pluck, optimism, and good humor. In particular, Lauren “Helping” Hand, the peer associate for this year’s course, led the pivot to the podcast platform, and this production is as much hers as anyone’s: She was chief cheerleader, coordinator, and executive producer, in tandem with Joey “Magic Fingers” Maguschak, who acted as senior sound engineer and producer

    Efficacy and safety of non-steroidal anti-inflammatory drugs (NSAIDs) for the treatment of acute pain after orthopedic trauma: a practice management guideline from the Eastern Association for the Surgery of Trauma and the Orthopedic Trauma Association

    Get PDF
    OBJECTIVES: Fracture is a common injury after a traumatic event. The efficacy and safety of non-steroidal anti-inflammatory drugs (NSAIDs) to treat acute pain related to fractures is not well established. METHODS: Clinically relevant questions were determined regarding NSAID use in the setting of trauma-induced fractures with clearly defined patient populations, interventions, comparisons and appropriately selected outcomes (PICO). These questions centered around efficacy (pain control, reduction in opioid use) and safety (non-union, kidney injury). A systematic review including literature search and meta-analysis was performed, and the quality of evidence was graded per the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. The working group reached consensus on the final evidence-based recommendations. RESULTS: A total of 19 studies were identified for analysis. Not all outcomes identified as critically important were reported in all studies, and the outcome of pain control was too heterogenous to perform a meta-analysis. Nine studies reported on non-union (three randomized control trials), six of which reported no association with NSAIDs. The overall incidence of non-union in patients receiving NSAIDs compared with patients not receiving NSAIDs was 2.99% and 2.19% (p=0.04), respectively. Of studies reporting on pain control and reduction of opioids, the use of NSAIDs reduced pain and the need for opioids after traumatic fracture. One study reported on the outcome of acute kidney injury and found no association with NSAID use. CONCLUSIONS: In patients with traumatic fractures, NSAIDs appear to reduce post-trauma pain, reduce the need for opioids and have a small effect on non-union. We conditionally recommend the use of NSAIDs in patients suffering from traumatic fractures as the benefit appears to outweigh the small potential risks

    Investigating Biotic Interactions in Deep Time

    Get PDF
    Recent renewed interest in using fossil data to understand how biotic interactions have shaped the evolution of life is challenging the widely held assumption that long-term climate changes are the primary drivers of biodiversity change. New approaches go beyond traditional richness and co-occurrence studies to explicitly model biotic interactions using data on fossil and modern biodiversity. Important developments in three primary areas of research include analysis of (i) macroevolutionary rates, (ii) the impacts of and recovery from extinction events, and (iii) how humans (Homo sapiens) affected interactions among non-human species. We present multiple lines of evidence for an important and measurable role of biotic interactions in shaping the evolution of communities and lineages on long timescales.Peer reviewe

    Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function

    Get PDF
    Ion selectivity is a defining feature of a given ion channel and is considered immutable. Here we show that ion selectivity of the lysosomal ion channel TPC2, which is hotly debated (Calcraft et al., 2009;Guo et al., 2017;Jha et al., 2014;Ruas et al., 2015;Wang et al., 2012), depends on the activating ligand. A high-throughput screen identified two structurally distinct TPC2 agonists. One of these evoked robust Ca2+-signals and non-selective cation currents, the other weaker Ca2+-signals and Na+-selective currents. These properties were mirrored by the Ca2+ mobilizing messenger, NAADP and the phosphoinositide, PI(3,5)P-2, respectively. Agonist action was differentially inhibited by mutation of a single TPC2 residue and coupled to opposing changes in lysosomal pH and exocytosis. Our findings resolve conflicting reports on the permeability and gating properties of TPC2 and they establish a new paradigm whereby a single ion channel mediates distinct, functionally-relevant ionic signatures on demand

    Late quaternary biotic homogenization of North American mammalian faunas

    Get PDF
    Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (similar to 30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (similar to 20,000-14,000 ybp). From similar to 10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at similar to 10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (similar to 2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back similar to 10,000 years.Peer reviewe

    Late quaternary biotic homogenization of North American mammalian faunas

    Get PDF
    Biotic homogenization-increasing similarity of species composition among ecological communities-has been linked to anthropogenic processes operating over the last century. Fossil evidence, however, suggests that humans have had impacts on ecosystems for millennia. We quantify biotic homogenization of North American mammalian assemblages during the late Pleistocene through Holocene (similar to 30,000 ybp to recent), a timespan encompassing increased evidence of humans on the landscape (similar to 20,000-14,000 ybp). From similar to 10,000 ybp to recent, assemblages became significantly more homogenous (>100% increase in Jaccard similarity), a pattern that cannot be explained by changes in fossil record sampling. Homogenization was most pronounced among mammals larger than 1 kg and occurred in two phases. The first followed the megafaunal extinction at similar to 10,000 ybp. The second, more rapid phase began during human population growth and early agricultural intensification (similar to 2,000-1,000 ybp). We show that North American ecosystems were homogenizing for millennia, extending human impacts back similar to 10,000 years.Peer reviewe
    corecore