237 research outputs found

    Community-associated Methicillin-resistant Staphylococcus aureus Isolates and Healthcare-Associated Infections1

    Get PDF
    MRSA isolates phenotypically similar to community-associated strains have become the predominant isolates associated with healthcare-associated MRSA in our hospital

    The Potential Trajectory of Carbapenem-Resistant Enterobacteriaceae, an Emerging Threat to Health-Care Facilities, and the Impact of the Centers for Disease Control and Prevention Toolkit.

    Get PDF
    Carbapenem-resistant Enterobacteriaceae (CRE), a group of pathogens resistant to most antibiotics and associated with high mortality, are a rising emerging public health threat. Current approaches to infection control and prevention have not been adequate to prevent spread. An important but unproven approach is to have hospitals in a region coordinate surveillance and infection control measures. Using our Regional Healthcare Ecosystem Analyst (RHEA) simulation model and detailed Orange County, California, patient-level data on adult inpatient hospital and nursing home admissions (2011-2012), we simulated the spread of CRE throughout Orange County health-care facilities under 3 scenarios: no specific control measures, facility-level infection control efforts (uncoordinated control measures), and a coordinated regional effort. Aggressive uncoordinated and coordinated approaches were highly similar, averting 2,976 and 2,789 CRE transmission events, respectively (72.2% and 77.0% of transmission events), by year 5. With moderate control measures, coordinated regional control resulted in 21.3% more averted cases (n = 408) than did uncoordinated control at year 5. Our model suggests that without increased infection control approaches, CRE would become endemic in nearly all Orange County health-care facilities within 10 years. While implementing the interventions in the Centers for Disease Control and Prevention's CRE toolkit would not completely stop the spread of CRE, it would cut its spread substantially, by half

    Longitudinal analysis of SARS-CoV-2 infection and vaccination in the LA-SPARTA cohort reveals increased risk of infection in vaccinated Hispanic participants

    Get PDF
    IntroductionSARS-CoV-2 is the etiologic agent of coronavirus disease 2019 (COVID-19). Questions remain regarding correlates of risk and immune protection against COVID-19.MethodsWe prospectively enrolled 200 participants with a high risk of SARS-CoV-2 occupational exposure at a U.S. medical center between December 2020 and April 2022. Participant exposure risks, vaccination/infection status, and symptoms were followed longitudinally at 3, 6, and 12 months, with blood and saliva collection. Serological response to the SARS-CoV-2 spike holoprotein (S), receptor binding domain (RBD) and nucleocapsid proteins (NP) were quantified by ELISA assay.ResultsBased on serology, 40 of 200 (20%) participants were infected. Healthcare and non-healthcare occupations had equivalent infection incidence. Only 79.5% of infected participants seroconverted for NP following infection, and 11.5% were unaware they had been infected. The antibody response to S was greater than to RBD. Hispanic ethnicity was associated with 2-fold greater incidence of infection despite vaccination in this cohort.DiscussionOverall, our findings demonstrate: 1) variability in the antibody response to SARS-CoV-2 infection despite similar exposure risk; 2) the concentration of binding antibody to the SARS-CoV-2 S or RBD proteins is not directly correlated with protection against infection in vaccinated individuals; and 3) determinants of infection risk include Hispanic ethnicity despite vaccination and similar occupational exposure

    Clumpy outer Galaxy molecular clouds and the steepening of the IMF

    Get PDF
    We report the results of high-resolution (~0.2 pc) CO(1-0) and CS(2-1) observations of the central regions of three star-forming molecular clouds in the far-outer Galaxy (~16 kpc from the Galactic Center): WB89 85 (Sh 2-127), WB89 380, and WB89 437. We used the BIMA array in combination with IRAM 30-m and NRAO 12-m observations. The GMC's in which the regions are embedded were studied by means of KOSMA 3-m CO(2-1) observations. The properties the CO and CS clumps are analyzed and compared with newly derived results of previously published single-dish measurements of local clouds (OrionB South and Rosette). We find that the slopes of the clump mass distributions (-1.28 and -1.49, for WB89 85 and WB89 380, respectively) are somewhat less steep than found for most local clouds, but similar to those of clouds which have been analyzed with the same clumpfind program. We investigate the clump stability by using the virial theorem, including all possible contributions (gravity, turbulence, magnetic fields, and pressure due to the interclump gas). It appears that under reasonable assumptions a combination of these forces would render most clumps stable. Comparing only gravity and turbulence, we find that in the far-outer Galaxy clouds, these forces are in equilibium (virial parameter alpha~1) for clumps down to the lowest masses found (a few Msol). For clumps in the local clouds alpha~1 only for clumps with masses larger than a few tens of Msol. Thus it appears that in these outer Galaxy clumps gravity is the dominant force down to a much lower mass than in local clouds, implying that gravitational collapse and star formation may occur more readily even in the smallest clumps. Although there are some caveats, due to the inhomogeneity of the data used, this might explain the apparently steeper IMF found in the outer Galaxy.Comment: 29 pages, including 9 tables, 21 figures. Accepted for Astron. Astrop

    Ab-Initio Calculation of Molecular Aggregation Effects: a Coumarin-343 Case Study

    Get PDF
    We present time-dependent density functional theory (TDDFT) calculations for single and dimerized Coumarin-343 molecules in order to investigate the quantum mechanical effects of chromophore aggregation in extended systems designed to function as a new generation of sensors and light-harvesting devices. Using the single-chromophore results, we describe the construction of effective Hamiltonians to predict the excitonic properties of aggregate systems. We compare the electronic coupling properties predicted by such effective Hamiltonians to those obtained from TDDFT calculations of dimers, and to the coupling predicted by the transition density cube (TDC) method. We determine the accuracy of the dipole-dipole approximation and TDC with respect to the separation distance and orientation of the dimers. In particular, we investigate the effects of including Coulomb coupling terms ignored in the typical tight-binding effective Hamiltonian. We also examine effects of orbital relaxation which cannot be captured by either of these models

    Fractional quantum Hall effect in a quantum point contact at filling fraction 5/2

    Full text link
    Recent theories suggest that the excitations of certain quantum Hall states may have exotic braiding statistics which could be used to build topological quantum gates. This has prompted an experimental push to study such states using confined geometries where the statistics can be tested. We study the transport properties of quantum point contacts (QPCs) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits well-developed fractional quantum Hall effect, including at bulk filling fraction 5/2. We find that a plateau at effective QPC filling factor 5/2 is identifiable in point contacts with lithographic widths of 1.2 microns and 0.8 microns, but not 0.5 microns. We study the temperature and dc-current-bias dependence of the 5/2 plateau in the QPC, as well as neighboring fractional and integer plateaus in the QPC while keeping the bulk at filling factor 3. Transport near QPC filling factor 5/2 is consistent with a picture of chiral Luttinger liquid edge-states with inter-edge tunneling, suggesting that an incompressible state at 5/2 forms in this confined geometry

    Clinical Impact of Ceftriaxone Resistance in Escherichia coli Bloodstream Infections: A Multicenter Prospective Cohort Study

    Get PDF
    BACKGROUND: Ceftriaxone-resistant (CRO-R) Escherichia coli bloodstream infections (BSIs) are common. METHODS: This is a prospective cohort of patients with E coli BSI at 14 United States hospitals between November 2020 and April 2021. For each patient with a CRO-R E coli BSI enrolled, the next consecutive patient with a ceftriaxone-susceptible (CRO-S) E coli BSI was included. Primary outcome was desirability of outcome ranking (DOOR) at day 30, with 50% probability of worse outcomes in the CRO-R group as the null hypothesis. Inverse probability weighting (IPW) was used to reduce confounding. RESULTS: Notable differences between patients infected with CRO-R and CRO-S E coli BSI included the proportion with Pitt bacteremia score ≥4 (23% vs 15%, P = .079) and the median time to active antibiotic therapy (12 hours [interquartile range {IQR}, 1-35 hours] vs 1 hour [IQR, 0-6 hours]; P \u3c .001). Unadjusted DOOR analyses indicated a 58% probability (95% confidence interval [CI], 52%-63%) for a worse clinical outcome in CRO-R versus CRO-S BSI. In the IPW-adjusted cohort, no difference was observed (54% [95% CI, 47%-61%]). Secondary outcomes included unadjusted and adjusted differences in the proportion of 30-day mortality between CRO-R and CRO-S BSIs (-5.3% [95% CI, -10.3% to -.4%] and -1.8 [95% CI, -6.7% to 3.2%], respectively), postculture median length of stay (8 days [IQR, 5-13 days] vs 6 days [IQR, 4-9 days]; P \u3c .001), and incident admission to a long-term care facility (22% vs 12%, P = .045). CONCLUSIONS: Patients with CRO-R E coli BSI generally have poorer outcomes compared to patients infected with CRO-S E coli BSI, even after adjusting for important confounders

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Control of star formation by supersonic turbulence

    Full text link
    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (ABSTRACT ABBREVIATED)Comment: Invited review for "Reviews of Modern Physics", 87 pages including 28 figures, in pres
    • …
    corecore