187 research outputs found

    Many Labs 5:Registered Replication Report of Crosby, Monin & Richardson (2008)

    Get PDF
    Crosby, Monin and Richardson (2008) found that hearing an offensive remark caused participants (n=25) to look at a potentially offended person, but only if that person could themselves hear the remark. They thus argued that the computation of offense involves the coordinated processing of high level linguistic and interpersonal cues. Their key effect, however, was not replicated by Jonas and Skorinko (2015) as part of the Reproducibility Project: Psychology (Open Science Collaboration, 2015). Three labs from Europe and America (n=283) tested whether the size of that effect might be increased when the stimuli were modified to be more appropriate for a diverse range of participants, using a peer-reviewed and pre-registered protocol. We found that this manipulation of protocol did not affect the size of the social referencing effect but, interestingly, we did replicate the original effect reported by Crosby and colleagues, albeit with a much smaller effect size. We discuss these results in the context of ongoing debates about how replication attempts should treat statistical power and contextual sensitivity

    The evaluation of European criminal law

    Get PDF
    The role of evaluation has become increasingly important in the context of EU policies in the field of judicial cooperation in criminal matters. This evolution is the result of an increasing number of legally binding instruments adopted in the framework of the third pillar of the European Union and of their growing impact on national legal systems

    Instability of Plastid DNA in the Nuclear Genome

    Get PDF
    Functional gene transfer from the plastid (chloroplast) and mitochondrial genomes to the nucleus has been an important driving force in eukaryotic evolution. Non-functional DNA transfer is far more frequent, and the frequency of such transfers from the plastid to the nucleus has been determined experimentally in tobacco using transplastomic lines containing, in their plastid genome, a kanamycin resistance gene (neo) readymade for nuclear expression. Contrary to expectations, non-Mendelian segregation of the kanamycin resistance phenotype is seen in progeny of some lines in which neo has been transferred to the nuclear genome. Here, we provide a detailed analysis of the instability of kanamycin resistance in nine of these lines, and we show that it is due to deletion of neo. Four lines showed instability with variation between progeny derived from different areas of the same plant, suggesting a loss of neo during somatic cell division. One line showed a consistent reduction in the proportion of kanamycin-resistant progeny, suggesting a loss of neo during meiosis, and the remaining four lines were relatively stable. To avoid genomic enlargement, the high frequency of plastid DNA integration into the nuclear genome necessitates a counterbalancing removal process. This is the first demonstration of such loss involving a high proportion of recent nuclear integrants. We propose that insertion, deletion, and rearrangement of plastid sequences in the nuclear genome are important evolutionary processes in the generation of novel nuclear genes. This work is also relevant in the context of transgenic plant research and crop production, because similar processes to those described here may be involved in the loss of plant transgenes

    A Gene in the Process of Endosymbiotic Transfer

    Get PDF
    BACKGROUND: The endosymbiotic birth of organelles is accompanied by massive transfer of endosymbiont genes to the eukaryotic host nucleus. In the centric diatom Thalassiosira pseudonana the Psb28 protein is encoded in the plastid genome while a second version is nuclear-encoded and possesses a bipartite N-terminal presequence necessary to target the protein into the diatom complex plastid. Thus it can represent a gene captured during endosymbiotic gene transfer. METHODOLOGY/PRINCIPAL FINDINGS: To specify the origin of nuclear- and plastid-encoded Psb28 in T. pseudonana we have performed extensive phylogenetic analyses of both mentioned genes. We have also experimentally tested the intracellular location of the nuclear-encoded Psb28 protein (nuPsb28) through transformation of the diatom Phaeodactylum tricornutum with the gene in question fused to EYFP. CONCLUSIONS/SIGNIFICANCE: We show here that both versions of the psb28 gene in T. pseudonana are transcribed. We also provide experimental evidence for successful targeting of the nuPsb28 fused with EYFP to the diatom complex plastid. Extensive phylogenetic analyses demonstrate that nucleotide composition of the analyzed genes deeply influences the tree topology and that appropriate methods designed to deal with a compositional bias of the sequences and the long branch attraction artefact (LBA) need to be used to overcome this obstacle. We propose that nuclear psb28 in T. pseudonana is a duplicate of a plastid localized version, and that it has been transferred from its endosymbiont

    COVID-19 in children with haematological malignancies

    Get PDF
    BACKGROUND: Children with cancer are not at increased risk of severe SARS-CoV-2 infection; however, adults with haematological malignancies have increased risk of severe infections compared with non-haematological malignancies. METHODS: We compared patients with haematological and non-haematological malignancies enrolled in the UK Paediatric Coronavirus Cancer Monitoring Project between 12 March 2020 and 16 February 2021. Children who received stem cell transplantation were excluded. RESULTS: Only 2/62 patients with haematological malignancy had severe/critical infections, with an OR of 0.5 for patients with haematological compared with non-haematological malignancies. INTERPRETATION: Children with haematological malignancies are at no greater risk of severe SARS-CoV-2 infection than those with non-haematological malignancies

    Severity of COVID-19 in children with cancer : Report from the United Kingdom Paediatric Coronavirus Cancer Monitoring Project

    Get PDF
    BACKGROUND: Children with cancer are frequently immunocompromised. While children are generally thought to be at less risk of severe SARS-CoV-2 infection than adults, comprehensive population-based evidence for the risk in children with cancer is unavailable. We aimed to produce evidence of the incidence and outcomes from SARS-CoV-2 in children with cancer attending all hospitals treating this population across the UK. METHODS: Retrospective and prospective observational study of all children in the UK under 16 diagnosed with cancer through data collection from all hospitals providing cancer care to this population. Eligible patients tested positive for SARS-CoV-2 on reverse transcription polymerase chain reaction (RT-PCR). The primary end-point was death, discharge or end of active care for COVID-19 for those remaining in hospital. RESULTS: Between 12 March 2020 and 31 July 2020, 54 cases were identified: 15 (28%) were asymptomatic, 34 (63%) had mild infections and 5 (10%) moderate, severe or critical infections. No patients died and only three patients required intensive care support due to COVID-19. Estimated incidence of hospital identified SARS-CoV-2 infection in children with cancer under 16 was 3%. CONCLUSIONS: Children with cancer with SARS-CoV-2 infection do not appear at increased risk of severe infection compared to the general paediatric population. This is reassuring and supports the continued delivery of standard treatment

    Many Labs 5: Testing Pre-Data-Collection Peer Review as an Intervention to Increase Replicability

    Get PDF
    Replication studies in psychological science sometimes fail to reproduce prior findings. If these studies use methods that are unfaithful to the original study or ineffective in eliciting the phenomenon of interest, then a failure to replicate may be a failure of the protocol rather than a challenge to the original finding. Formal pre-data-collection peer review by experts may address shortcomings and increase replicability rates. We selected 10 replication studies from the Reproducibility Project: Psychology (RP:P; Open Science Collaboration, 2015) for which the original authors had expressed concerns about the replication designs before data collection; only one of these studies had yielded a statistically significant effect (p < .05). Commenters suggested that lack of adherence to expert review and low-powered tests were the reasons that most of these RP:P studies failed to replicate the original effects. We revised the replication protocols and received formal peer review prior to conducting new replication studies. We administered the RP:P and revised protocols in multiple laboratories (median number of laboratories per original study = 6.5, range = 3–9; median total sample = 1,279.5, range = 276–3,512) for high-powered tests of each original finding with both protocols. Overall, following the preregistered analysis plan, we found that the revised protocols produced effect sizes similar to those of the RP:P protocols (Δr = .002 or .014, depending on analytic approach). The median effect size for the revised protocols (r = .05) was similar to that of the RP:P protocols (r = .04) and the original RP:P replications (r = .11), and smaller than that of the original studies (r = .37). Analysis of the cumulative evidence across the original studies and the corresponding three replication attempts provided very precise estimates of the 10 tested effects and indicated that their effect sizes (median r = .07, range = .00–.15) were 78% smaller, on average, than the original effect sizes (median r = .37, range = .19–.50).Additional co-authors: Ivan Ropovik, Balazs Aczel, Lena F. Aeschbach, Luca Andrighetto, Jack D. Arnal, Holly Arrow, Peter Babincak, Bence E. Bakos, Gabriel BanĂ­k, Ernest Baskin, Radomir Belopavlovic, Michael H. Bernstein, MichaƂ BiaƂek, Nicholas G. Bloxsom, Bojana BodroĆŸa, Diane B. V. Bonfiglio, Leanne Boucher, Florian BrĂŒhlmann, Claudia C. Brumbaugh, Erica Casini, Yiling Chen, Carlo Chiorri, William J. Chopik, Oliver Christ, Antonia M. Ciunci, Heather M. Claypool, Sean Coary, Marija V. Cˇolic, W. Matthew Collins, Paul G. Curran, Chris R. Day, Anna Dreber, John E. Edlund, Filipe FalcĂŁo, Anna Fedor, Lily Feinberg, Ian R. Ferguson, MĂĄire Ford, Michael C. Frank, Emily Fryberger, Alexander Garinther, Katarzyna Gawryluk, Kayla Ashbaugh, Mauro Giacomantonio, Steffen R. Giessner, Jon E. Grahe, Rosanna E. Guadagno, Ewa HaƂasa, Rias A. Hilliard, Joachim HĂŒffmeier, Sean Hughes, Katarzyna Idzikowska, Michael Inzlicht, Alan Jern, William JimĂ©nez-Leal, Magnus Johannesson, Jennifer A. Joy-Gaba, Mathias Kauff, Danielle J. Kellier, Grecia Kessinger, Mallory C. Kidwell, Amanda M. Kimbrough, Josiah P. J. King, Vanessa S. Kolb, Sabina KoƂodziej, Marton Kovacs, Karolina Krasuska, Sue Kraus, Lacy E. Krueger, Katarzyna Kuchno, Caio Ambrosio Lage, Eleanor V. Langford, Carmel A. Levitan, Tiago JessĂ© Souza de Lima, Hause Lin, Samuel Lins, Jia E. Loy, Dylan Manfredi, Ɓukasz Markiewicz, Madhavi Menon, Brett Mercier, Mitchell Metzger, Venus Meyet, Jeremy K. Miller, Andres Montealegre, Don A. Moore, RafaƂ Muda, Gideon Nave, Austin Lee Nichols, Sarah A. Novak, Christian Nunnally, Ana Orlic, Anna Palinkas, Angelo Panno, Kimberly P. Parks, Ivana Pedovic, Emilian Pekala, Matthew R. Penner, Sebastiaan Pessers, Boban Petrovic, Thomas Pfeiffer, Damian Pienkosz, Emanuele Preti, Danka Puric, Tiago Ramos, Jonathan Ravid, Timothy S. Razza, Katrin Rentzsch, Juliette Richetin, Sean C. Rife, Anna Dalla Rosa, Kaylis Hase Rudy, Janos Salamon, Blair Saunders, PrzemysƂaw Sawicki, Kathleen Schmidt, Kurt Schuepfer, Thomas Schultze, Stefan Schulz-Hardt, Astrid SchĂŒtz, Ani N. Shabazian, Rachel L. Shubella, Adam Siegel, RĂșben Silva, Barbara Sioma, Lauren Skorb, Luana Elayne Cunha de Souza, Sara Steegen, L. A. R. Stein, R. Weylin Sternglanz, Darko Stojilovic, Daniel Storage, Gavin Brent Sullivan, Barnabas Szaszi, Peter Szecsi, Orsolya Szöke, Attila Szuts, Manuela Thomae, Natasha D. Tidwell, Carly Tocco, Ann-Kathrin Torka, Francis Tuerlinckx, Wolf Vanpaemel, Leigh Ann Vaughn, Michelangelo Vianello, Domenico Viganola, Maria Vlachou, Ryan J. Walker, Sophia C. Weissgerber, Aaron L. Wichman, Bradford J. Wiggins, Daniel Wolf, Michael J. Wood, David Zealley, Iris ĆœeĆŸelj, Mark Zrubka, and Brian A. Nose

    Selection on Alleles Affecting Human Longevity and Late-Life Disease: The Example of Apolipoprotein E

    Get PDF
    It is often claimed that genes affecting health in old age, such as cardiovascular and Alzheimer diseases, are beyond the reach of natural selection. We show in a simulation study based on known genetic (apolipoprotein E) and non-genetic risk factors (gender, diet, smoking, alcohol, exercise) that, because there is a statistical distribution of ages at which these genes exert their influence on morbidity and mortality, the effects of selection are in fact non-negligible. A gradual increase with each generation of the Δ2 and Δ3 alleles of the gene at the expense of the Δ4 allele was predicted from the model. The Δ2 allele frequency was found to increase slightly more rapidly than that for Δ3, although there was no statistically significant difference between the two. Our result may explain the recent evolutionary history of the epsilon 2, 3 and 4 alleles of the apolipoprotein E gene and has wider relevance for genes affecting human longevity

    Recent Acceleration of Plastid Sequence and Structural Evolution Coincides with Extreme Mitochondrial Divergence in the Angiosperm Genus Silene

    Get PDF
    The angiosperm genus Silene exhibits some of the most extreme and rapid divergence ever identified in mitochondrial genome architecture and nucleotide substitution rates. These patterns have been considered mitochondrial specific based on the absence of correlated changes in the small number of available nuclear and plastid gene sequences. To better assess the relationship between mitochondrial and plastid evolution, we sequenced the plastid genomes from four Silene species with fully sequenced mitochondrial genomes. We found that two species with fast-evolving mitochondrial genomes, S. noctiflora and S. conica, also exhibit accelerated rates of sequence and structural evolution in their plastid genomes. The nature of these changes, however, is markedly different from those in the mitochondrial genome. For example, in contrast to the mitochondrial pattern, which appears to be genome wide and mutationally driven, the plastid substitution rate accelerations are restricted to a subset of genes and preferentially affect nonsynonymous sites, indicating that altered selection pressures are acting on specific plastid-encoded functions in these species. Indeed, some plastid genes in S. noctiflora and S. conica show strong evidence of positive selection. In contrast, two species with more slowly evolving mitochondrial genomes, S. latifolia and S. vulgaris, have correspondingly low rates of nucleotide substitution in plastid genes as well as a plastid genome structure that has remained essentially unchanged since the origin of angiosperms. These results raise the possibility that common evolutionary forces could be shaping the extreme but distinct patterns of divergence in both organelle genomes within this genus
    • 

    corecore