217 research outputs found
Virus isolation studies suggest short-term variations in abundance in natural cyanophage populations of the Indian Ocean
Cyanophage abundance has been shown to fluctuate over long timescales and with depth, but little is known about how it varies over short timescales. Previous short-term studies have relied on counting total virus numbers and therefore the phages which infect cyanobacteria cannot be distinguished from the total count.
In this study, an isolation-based approach was used to determine cyanophage abundance from water samples collected over a depth profile for a 24 h period from the Indian Ocean. Samples were used to infect Synechococcus sp. WH7803 and the number of plaque forming units (pfu) at each time point and depth were counted. At 10 m phage numbers were similar for most time-points, but there was a distinct peak in abundance at 0100 hours. Phage numbers were lower at 25 m and 50 m and did not show such strong temporal variation. No phages were found below this depth. Therefore, we conclude that only the abundance of phages in surface waters showed a clear temporal pattern over a short timescale. Fifty phages from a range of depths and time points were isolated and purified. The molecular diversity of these phages was estimated using a section of the phage-encoded psbD gene and the results from a phylogenetic analysis do not suggest that phages from the deeper waters form a distinct subgroup
The “weanling’s dilemma” revisited: Evolving bodies of evidence and the problem of infant paleodietary interpretation
Breastfeeding is known to be a powerful mediator of maternal and childhood health, with impacts throughout the lifecourse. Paleodietary studies of the past thirty years have accordingly taken an enduring interest in the health and diet of young children as a potential indicator of population fertility, subsistence, and mortality patterns. While progress has been made in recent decades towards acknowledging the agency of children, many paleodietary reconstructions have failed to incorporate developments in cognate disciplines revealing synergistic dynamics between maternal and offspring biology. Central to this understanding has been heavy reliance on the “weanling’s dilemma”, in which infants are thought to face a bleak choice between loss of immunity or malnutrition. Using a review of immunological and epidemiological evidence for the dynamic and supportive role that breastfeeding plays throughout the complementary feeding period, this paper offers context and nuance for understanding past feeding transitions. We suggest that future interpretative frameworks for infant paleodietary and bioarchaeological research should include a broad knowledge base that keeps pace with relevant developments outside of those disciplines
Mobile elites at Frattesina: flows of people in a Late Bronze Age ‘port of trade’ in northern Italy
Following a mid twelfth-century BC demographic crisis, Frattesina, in northern Italy, arose as a prominent hub linking continental Europe and the Mediterranean, as evidenced by the remarkable variety of exotic materials and commodities discovered at the site. Debate persists, however, about the extent to which migrants influenced the foundation and development of Frattesina. The authors present the results of strontium isotope analyses, which
suggest significant migration to the site, particularly of elites, mostly from within a 50km radius. Among these non-indigenous people, the authors identify a \u2018warrior-chief\u2019, whom they interpret as representing a new, more hierarchical society
Cyanophage MazG is a pyrophosphohydrolase but unable to hydrolyse magic spot nucleotides
Bacteriophage possess a variety of auxiliary metabolic genes (AMGs) of bacterial origin. These proteins enable them to maximise infection efficiency, subverting bacterial metabolic processes for the purpose of viral genome replication and synthesis of the next generation of virion progeny. Here, we examined the enzymatic activity of a cyanophage MazG protein – a putative pyrophosphohydrolase previously implicated in regulation of the stringent response via reducing levels of the central alarmone molecule (p)ppGpp. We demonstrate however, that the purified viral MazG shows no binding or hydrolysis activity against (p)ppGpp. Instead, dGTP and dCTP appear to be the preferred substrates of this protein, consistent with a role preferentially hydrolysing deoxyribonucleotides from the high GC content host Synechococcus genome. This showcases a new example of the fine‐tuned nature of viral metabolic processes
A Land of Plenty? Colonial Diet in Rural New Zealand
Colonial New Zealand was built on the ideal of creating better lives for settlers. Emigrants came looking to escape the shackles of the class-system and poor conditions in Industrial Revolution period Britain. Colonial propaganda claimed that most emigrants achieved their aims, but the lives the colonists actually experienced upon reaching New Zealand remain relatively unexplored from a biosocial perspective. In this paper we present a pilot study of stable isotope results of bone collagen from seven adults interred in the St. John’s Cemetery (SJM), Milton, New Zealand (ca. AD 1860–1900). We interpret the diet at Milton and broadly compare our isotopic results with contemporaneous samples from Britain. We show that, like contemporary Britain, the diet of our studied individuals was focused on C3 crops and terrestrial meat sources. Despite higher ????15N values in contemporary UK populations (which can simplistically be interpreted as indicative of higher meat intake), consideration of different local baselines makes it likely that this New Zealand population had relatively similar levels of meat intake. Interestingly marine resources did not form an important part of the Milton diet, despite the site's proximity to the ocean, hinting at the possible stigmatisation of local resources and the development of a European New Zealand (pākehā) food identity
The structure of the core NuRD repression complex provides insights into its interaction with chromatin
The NuRD complex is a multi-protein transcriptional corepressor that couples histone deacetylase and ATP-dependent chromatin remodelling activities. The complex regulates the higher-order structure of chromatin, and has important roles in the regulation of gene expression, DNA damage repair and cell differentiation. HDACs 1 and 2 are recruited by the MTA1 corepressor to form the catalytic core of the complex. The histone chaperone protein RBBP4, has previously been shown to bind to the carboxy-terminal tail of MTA1. We show that MTA1 recruits a second copy of RBBP4. The crystal structure reveals an extensive interface between MTA1 and RBBP4. An EM structure, supported by SAXS and crosslinking, reveals the architecture of the dimeric HDAC1:MTA1:RBBP4 assembly which forms the core of the NuRD complex. We find evidence that in this complex RBBP4 mediates interaction with histone H3 tails, but not histone H4, suggesting a mechanism for recruitment of the NuRD complex to chromati
A distinct, high-affinity, alkaline phosphatase facilitates occupation of P-depleted environments by marine picocyanobacteria
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus, the two most abundant phototrophs on Earth, thrive in oligotrophic oceanic regions. While it is well known that specific lineages are exquisitely adapted to prevailing in situ light and temperature regimes, much less is known of the molecular machinery required to facilitate occupancy of these low-nutrient environments. Here, we describe a hitherto unknown alkaline phosphatase, Psip1, that has a substantially higher affinity for phosphomonoesters than other well-known phosphatases like PhoA, PhoX, or PhoD and is restricted to clade III Synechococcus and a subset of high light I-adapted Prochlorococcus strains, suggesting niche specificity. We demonstrate that Psip1 has undergone convergent evolution with PhoX, requiring both iron and calcium for activity and likely possessing identical key residues around the active site, despite generally very low sequence homology. Interrogation of metagenomes and transcriptomes from TARA oceans and an Atlantic Meridional transect shows that psip1 is abundant and highly expressed in picocyanobacterial populations from the Mediterranean Sea and north Atlantic gyre, regions well recognized to be phosphorus (P)-deplete. Together, this identifies psip1 as an important oligotrophy-specific gene for P recycling in these organisms. Furthermore, psip1 is not restricted to picocyanobacteria and is abundant and highly transcribed in some α-proteobacteria and eukaryotic algae, suggesting that such a high-affinity phosphatase is important across the microbial taxonomic world to occupy low-P environments.</p
Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens
Background: Viruses are the most abundant biological entities on Earth, known to be crucial components of microbial ecosystems. However, there is little information on the viral community within agricultural waste. There are currently ~ 2.7 million dairy cattle in the UK producing 7–8% of their own bodyweight in manure daily, and 28 million tonnes annually. To avoid pollution of UK freshwaters, manure must be stored and spread in accordance with guidelines set by DEFRA. Manures are used as fertiliser, and widely spread over crop fields, yet little is known about their microbial composition. We analysed the virome of agricultural slurry over a 5-month period using short and long-read sequencing. Results: Hybrid sequencing uncovered more high-quality viral genomes than long or short-reads alone; yielding 7682 vOTUs, 174 of which were complete viral genomes. The slurry virome was highly diverse and dominated by lytic bacteriophage, the majority of which represent novel genera (~ 98%). Despite constant influx and efflux of slurry, the composition and diversity of the slurry virome was extremely stable over time, with 55% of vOTUs detected in all samples over a 5-month period. Functional annotation revealed a diverse and abundant range of auxiliary metabolic genes and novel features present in the community, including the agriculturally relevant virulence factor VapE, which was widely distributed across different phage genera that were predicted to infect several hosts. Furthermore, we identified an abundance of phage-encoded diversity-generating retroelements, which were previously thought to be rare on lytic viral genomes. Additionally, we identified a group of crAssphages, including lineages that were previously thought only to be found in the human gut. Conclusions: The cattle slurry virome is complex, diverse and dominated by novel genera, many of which are not recovered using long or short-reads alone. Phages were found to encode a wide range of AMGs that are not constrained to particular groups or predicted hosts, including virulence determinants and putative ARGs. The application of agricultural slurry to land may therefore be a driver of bacterial virulence and antimicrobial resistance in the environment. [MediaObject not available: see fulltext.
- …