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Hybrid assembly of an agricultural slurry
virome reveals a diverse and stable
community with the potential to alter the
metabolism and virulence of veterinary
pathogens
Ryan Cook1, Steve Hooton2, Urmi Trivedi3, Liz King2, Christine E. R. Dodd2, Jon L. Hobman2, Dov J. Stekel2,
Michael A. Jones1* and Andrew D. Millard4*

Abstract

Background: Viruses are the most abundant biological entities on Earth, known to be crucial components of microbial
ecosystems. However, there is little information on the viral community within agricultural waste. There are currently ~ 2.7
million dairy cattle in the UK producing 7–8% of their own bodyweight in manure daily, and 28 million tonnes annually. To
avoid pollution of UK freshwaters, manure must be stored and spread in accordance with guidelines set by DEFRA. Manures
are used as fertiliser, and widely spread over crop fields, yet little is known about their microbial composition. We analysed
the virome of agricultural slurry over a 5-month period using short and long-read sequencing.

Results: Hybrid sequencing uncovered more high-quality viral genomes than long or short-reads alone; yielding 7682
vOTUs, 174 of which were complete viral genomes. The slurry virome was highly diverse and dominated by lytic
bacteriophage, the majority of which represent novel genera (~ 98%). Despite constant influx and efflux of slurry, the
composition and diversity of the slurry virome was extremely stable over time, with 55% of vOTUs detected in all
samples over a 5-month period. Functional annotation revealed a diverse and abundant range of auxiliary metabolic
genes and novel features present in the community, including the agriculturally relevant virulence factor VapE, which
was widely distributed across different phage genera that were predicted to infect several hosts. Furthermore, we
identified an abundance of phage-encoded diversity-generating retroelements, which were previously thought to be
rare on lytic viral genomes. Additionally, we identified a group of crAssphages, including lineages that were previously
thought only to be found in the human gut.
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(Continued from previous page)

Conclusions: The cattle slurry virome is complex, diverse and dominated by novel genera, many of which are not
recovered using long or short-reads alone. Phages were found to encode a wide range of AMGs that are not constrained to
particular groups or predicted hosts, including virulence determinants and putative ARGs. The application of agricultural
slurry to land may therefore be a driver of bacterial virulence and antimicrobial resistance in the environment.

Keywords: Phages, Viromics, VapE, Diversity-generating retroelements, crAssphage, PromethION, Slurry, Dairy

Background
Bacteriophages, or simply phages are recognised as the
most abundant biological entities on the planet [1] and
drive bacterial evolution through predator-prey dynamics
[2, 3], and horizontal gene transfer [4]. In all systems
where phages have been studied in detail, they have sig-
nificant ecological roles [5–7]. The contribution of phages
to microbial communities has arguably been most exten-
sively studied in the oceans [8–12] where, in addition to
releasing large quantities of organic carbon and other nu-
trients through lysing bacteria, marine phages are thought
to contribute to biogeochemical cycles by augmenting
host metabolism with auxiliary metabolic genes (AMGs)
[12–15]. Since their initial discovery, AMGs have been
identified in diverse environments, including the ocean
and soils [10, 16]. The putative functions of AMGs are
wide-ranging with the potential to alter photosynthesis,
carbon metabolism, sulphur metabolism, nitrogen uptake
and complex carbohydrate metabolism [11–13, 16–21].
In addition to augmenting host metabolism, phages

can contribute to bacterial virulence through phage con-
version via the carriage of virulence factors and toxins
[22–27]. Phages have also been implicated in the transfer
of antimicrobial resistance genes (ARGs) [28]; however,
the study into the importance of phages in the transfer
of ARGs has reached polarising conclusions [29, 30].
Despite the vital and complex contributions of phages to
microbial ecology, there is a lack of knowledge about
their roles in agricultural slurry.
Manure is an unavoidable by-product from the farm-

ing of livestock. There are ~ 2.7 million dairy cattle in
the UK, with ~ 1.8 million in milking herds [31]. A fully
grown milking cow produces 7–8% of their own body-
weight as manure per day [32], leading to an estimated
28.31 million tonnes of manure produced by UK dairy
cattle in 2010 alone [33]. These wastes are rich in ni-
trates and phosphates, making them valuable as a source
of organic fertiliser, with an average value of £78 per
cow per year [34]. However, agricultural wastes can be
an environmental pollutant. Inadequate storage and agri-
cultural run-off may lead to an increased biological oxy-
gen demand (BOD) of freshwaters, leading to algal
blooms and eutrophication [35–38]. Areas particularly at
risk of nitrate pollution of ground or surface waters are
classified as nitrate vulnerable zones (NVZs), and these

constitute 55% of land in England [39]. For this reason,
the application of organic fertilisers to fields in the UK is
strictly controlled and can only be applied during certain
times of the year [40]. Thus, there is the requirement to
store vast volumes of slurry for several months.
To produce slurry, solids are separated from manure

using apparatus such as a screw press. The liquid fraction
forms the basis of slurry, which is stored in a tank or la-
goon, where it is mixed with water and other agricultural
wastes before its application as fertiliser. Despite being
widely used as a fertiliser, the composition of the virome
within slurry is poorly studied. Culture-based approaches
have been used to study phages infecting specific bacteria
such as Escherichia coli [41–43], but total viral diversity
within cattle slurry remains largely unexplored.
Short-read viromics has transformed our understanding

of phages in other systems, allowing an overview of the
abundance and diversity of phages [8, 9, 12, 44] and
AMGs found within their genomes [12, 13, 16]. The
power of viromics is exemplified by the study of crAssph-
age, which was first discovered in viromes in 2014 [45]
and has subsequently been found to be the most abundant
phage in the human gut and has recently been brought
into culture [45–47]. However, the use of short-reads is
not without limitations. Phages that contain genomic
islands and/or have high micro-diversity, such as phages
of the ubiquitous Pelagibacterales [48, 49], can cause gen-
ome fragmentation during assembly [50–53]. The devel-
opment of long-read sequencing technologies—most
notably Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT)—offer a solution to such issues. The
longer reads are potentially able to span the length of en-
tire phage genomes, overcoming assembly issues resulting
from repeat regions and low coverage [50–52]. The cost
of longer reads is a higher error rate, which can lead to in-
accurate CDS prediction [54, 55].
Recently, a Long-Read Linker-Amplified Shotgun Li-

brary (LASL) approach was developed that combines
LASL library preparation with ONT MinION sequen-
cing [56]. This approach overcame both the requirement
for high DNA input for MinION sequencing and associ-
ated assembly issues with short-read sequencing. The
resulting assembly increased both the number and com-
pleteness of phage genomes compared to short-read as-
semblies [56]. An alternative approach that has utilised
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long-read sequencing used the ONT GridION platform
to obtain entire phage genomes using an amplification-
free approach on high molecular weight DNA [57].
While this approach recovered over 1000 high-quality
viral genomes that could not be recovered from short-
reads alone, it requires large amounts of input DNA
[57], that may be a limiting factor of many
environments.
The aim of this work was to utilise viral metagenomics

to investigate the diversity, community structure and
ecological roles of viruses within dairy cattle slurry that
is spread on agricultural land as an organic fertiliser.

Methods
DNA extraction and sequencing
DNA from the viral fraction was extracted from 10 ml
of slurry as previously described [58]. Briefly, slurry was
mixed with PBS buffer and centrifuged, prior to filtration
to remove bacteria. Viral particles were concentrated
using an Amicon column (Sigma-Aldrich) and DNA was
extracted using a standard phenol-chloroform extrac-
tion. For short-read sequencing on un-amplified DNA,
Illumina sequencing was carried out on NovaSeq using 2
× 150 library. For long read sequencing, DNA from four
viral samples was pooled and subject to amplification
with Illustra Ready-To-Go Genomphi V3 DNA amplifi-
cation kit (GE, Healthcare) following the manufacturer’s
instructions. Post amplification DNA was de-branched
with S1 nuclease (Thermo Fisher Scientific), following
the manufacturer’s instructions and cleaned using a
DNA Clean and Concentrator column (Zymo Research).
Sequencing was carried out by Edinburgh Genomics,
with size selection of DNA to remove DNA < 5 kb prior
to running on single PromethION flow cell. Reads were
based called with guppy v2.3.35.

Assembly and quality control
Illumina virome reads were trimmed with Trimmomatic
v0.36 [59] using the following settings; PE illuminaclip,
2:30:10 leading:15 trailing:15 slidingwindow:4:20 minlen:
50. Reads from the five samples were co-assembled with
MEGAHIT v1.1.2 [60] using the settings; --k-min 21
--k-max 149 --k-step 24. Long-reads were assembled
with flye v2.6-g0d65569, reads were mapped back
against the assembly with Minimap2 v2.14-r892-dirty
[61] to produce BAM files and initially corrected with
marginPolish v1.0.0 with ‘allParams.np.ecoli.json’. Bac-
terial contamination and virus-like particle (VLP) enrich-
ment was assessed with ViromeQC v1.0 [62].

Identifying viral operational taxonomic units
To identify viral contigs, a number of filtering steps were
applied. All contigs ≥ 10 kb and circular contigs < 10 kb
[53] were processed using MASH v2.0 [63] separately

against the RefSeq70 database [64] and a publicly avail-
able database of phage genomes (March 2020; P = 0.01).
If the closest RefSeq70 hit was to a phage/virus, the con-
tig was included as a viral operational taxonomic unit
(vOTU). Failing this, if the contig obtained a closer hit
to the phage database than RefSeq70, the contig was in-
cluded as a vOTU. Remaining contigs were included as
vOTUs if they satisfied at least two of the following cri-
teria; 1: VIBRANT v1.0.1 indicated sequence is viral
[65], 2: obtained adjusted p value ≤ 0.05 from DeepVir-
Finder v1.0 [66], 3: 30% of ORFs on the contig obtained
a hit to a prokaryotic virus orthologous group (pVOG)
[67] using Hmmscan v3.1b2 (-E 0.001) [68]. However,
circular contigs < 10 kb only had to satisfy either criteria
1 or 3, as DeepVirFinder scores for these contigs were
inconsistent.

Prophage analysis
A set of prophage sequences was identified from bacterial
metagenomes from the same tank These were filtered as
above, however contigs < 10 kb were not included even if
circular. To determine which prophage vOTUs could be
detected in the free viral fraction, Illumina virome reads
were mapped to vOTUs using Bbmap v38.69 [69] at 90%
minimum ID and the ambiguous=all flag, and Pro-
methION reads were mapped to prophage vOTUs using
Minimap2 v2.14-r892-dirty [61] with parameters ‘-a -x
map-ont’. vOTUs were deemed as present in the free viral
fraction if they obtained ≥ 1x coverage across ≥ 75% of
contig length in at least one sample [53]. To determine
the ends of prophages, differential coverage obtained by
mapping the Illumina virome reads was investigated. Me-
dian coverage of the whole prophage was calculated and
compared to median coverage across a 500 bp sliding win-
dow (Supplementary Tables 6 & 7). If the 500 bp window
had a depth of coverage ≥ 2x standard deviations lower
than the median coverage of the whole prophage, this was
considered a break in coverage and used to infer the ends
of the prophage. An example is provided in supplementary
Figure 1.

Hybrid assembly composition
Illumina reads were mapped to PromethION vOTUs
using Minimap2 v2.14-r892-dirty [61] and the contigs
were polished using Pilon v1.22 [70]. The PromethION
vOTUs underwent multiple rounds of polishing until
changes to the sequence were no longer made, or the
same change was swapped back and forth between
rounds of polishing. The Illumina vOTUs, hybrid
vOTUs and prophage vOTUs (only those detected in the
viral fraction) were de-replicated at 95% average nucleo-
tide identity (ANI) over 80% genome length using Clus-
terGenomes v5.1 [71] to produce a final set of vOTUs,
hereby referred to as the Final Virome. To determine
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assembly quality, CheckV v0.5.0 [72] was used. As this
pipeline was released after the analysis in this work was
performed, this was performed post-analysis.

Alpha diversity and population dynamics
To estimate relative abundance, Illumina reads were
mapped to vOTUs using Bbmap v38.69 [69] at 90%
minimum ID and the ambiguous=all flag. vOTUs were
deemed as present in a sample if they obtained ≥ 1x
coverage across ≥ 75% of contig length [53]. The number
of reads mapped to present vOTUs were normalised to
reads mapped per million. Relative abundance values
were analysed using Phyloseq v1.26.1 [73] in R v3.5.1
[74] to calculate diversity statistics.
Statistical testing of similarity of vOTU profiles be-

tween samples was carried out using DirtyGenes [75].
We used the randomization option with 5000 simula-
tions rather than chi-squared because of the small num-
ber of samples, but resampling from the null hypothesis
Dirichlet distribution because there are no replicated li-
braries; the updated code has been uploaded to GitHub
(https://github.com/LMShaw/DirtyGenes). The analysis
was repeated using both the preferred cut-off of mini-
mum 1% abundance in at least one sample and also with
minimum abundance at 0.5% in at least one sample.
This is because with a 1% cut-off only seven vOTUs
were included (plus an ‘other’ category binning all
remaining lower abundance vOTUs) which we did not
consider to be sufficiently representative; with 0.5%, 22
vOTUs were included (plus an ‘other’ category).

Functional annotation
Final Virome vOTUs were annotated using Prokka v1.12
[76] with a custom database created from phage ge-
nomes downloaded at the time (March, 2020) [77], and
ORFs were compared to profile HMMs of pVOGs [67]
using Hmmscan v3.1b2 (-E 0.001) [68]. Final Virome
vOTU ORFs were clustered at 90% ID over 90% contig
length using CD-HIT v4.6 [78] to reduce redundancy.
The resultant proteins were submitted to eggNOG-
mapper v2.0 [79] with default parameters, and the out-
put was manually inspected to identify AMGs of inter-
est. Translated ORFs identified as carbohydrate-active
enzymes (CAZYmes) by eggNOG were submitted to the
dbCAN2 meta-server for CAZYme identification using
the HMMER method to confirm their identity [16, 80].

Diversity-generating retroelement analysis
vOTUs found to encode a putative reverse transcriptase
were processed using MetaCCST [81] to identify poten-
tial diversity-generating retroelements (DGRs). To iden-
tify hypervariable regions in the target gene of DGRs,
reads from each sample were individually mapped to
vOTUs using Bbmap v38.69 [69] at 95% minimum ID

with the ambiguous=all flag. Resultant bam files were
processed with Samtools v1.10 [82] to produce a mpi-
leup file. Variants were called using VarScan v2.3 [83]
mpileup2snp command with parameters ‘--min-coverage
10 --min-avg-qual-30’. The percentage of SNP sites per
gene were calculated for both DGR target gene(s) and all
other genes on the vOTU, in order to identify if the
DGR target gene(s) contained more SNP sites than on
average across the vOTU.

Taxonomy and predicted host
Final Virome vOTUs were clustered using vConTACT2
v0.9.13 [84] with parameters; --db ‘ProkaryoticViralRef-
Seq85-Merged’ --pcs-mode MCL --vcs-mode Cluster-
ONE. A set of publicly available phage genome sequences
(7527), that had been deduplicated at 95% identity with
dedupe.sh v36.20 [69], were included. The resultant net-
work was visualised using Cytoscape v3.7.1 [85].
To determine if any previously known phage genomes

were present in slurry viromes, reads were mapped to a
dataset of publicly a set of publicly available phage gen-
ome sequences (March, 2020; 11,030), that had been
deduplicated at 95% identity with dedupe.sh v36.20 [69].
Illumina reads were mapped using Bbmap v38.69 [69] at
90% minimum ID [53] and the ambiguous=all flag. Pro-
methION reads were mapped using Minimap2 v2.14-
r892-dirty [61] with parameters ‘-a -x map-ont’. Phages
were deemed as present if they obtained ≥ 1x coverage
across ≥ 75% of sequence length [53].
Putative hosts for viral vOTUs were predicted with

WiSH v1.0 [86] using a database of 9620 bacterial ge-
nomes. A p value cut-off of 0.05 was used. Taxonomy
for the predicted hosts was obtained using the R [74]
package Taxonomizr v0.5.3 [87].

Lifestyle prediction
To determine which Final Virome vOTUs were temper-
ate, ORFs were compared to a custom set of 29 profile
HMMs for transposase, integrase, excisionase, resolvase
and recombinase proteins downloaded from Pfam
(PF07508, PF00589, PF01609, PF03184, PF02914,
PF01797, PF04986, PF00665, PF07825, PF00239,
PF13009, PF16795, PF01526, PF03400, PF01610,
PF03050, PF04693, PF07592, PF12762, PF13359,
PF13586, PF13610, PF13612, PF13701, PF13737,
PF13751, PF13808, PF13843 and PF13358) [88] using
Hmmscan v3.1b2 [68] with the --cut_ga flag. Any
vOTUs with an ORF which obtained a hit were classified
as temperate.

Positive selection analysis
Final Virome vOTUs which obtained ≥ 15x median
coverage across ≥ 75% of contig length in every sample
(excluding PHI75) were included in variant analysis.
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Briefly, reads were mapped onto the contigs using
Bbmap v38.69 [69] at 95% minimum ID with the am-
biguous=all flag, and a sorted indexed BAM file was pro-
duced. Snippy v4.4.5 [89] was used to call variants with
parameters ‘--mapqual 0 --mincov 10’. For genes which
contained at least one single nucleotide polymorphism
(SNP) or multiple nucleotide polymorphism (MNP), nat-
ural selection (pN/pS) was calculated using a method
adapted from Gregory et al. [9]. In this method, adjacent
SNPs were linked as MNPs by Snippy.

Results
The farm in this study is a high-performance dairy farm
in the East Midlands, UK with ~ 200 milking cattle. It
houses a three million litre capacity slurry tank and an
additional seven million litre lagoon to house overflow
from the tank. The tank receives daily influent from the
dairy farm including faeces, urine, washwater, footbath
and waste milk through a slurry handling and general

farm drainage system. Slurry solids are separated using a
bed-press and solids are stored in a muck heap. The
slurry tank and muck heap are open to the elements and
the slurry tank also receives further influent from rain-
water, muck heap run-off, and potentially from wildlife.
The tank is emptied to ~ 10% of its maximum volume
every ~ 6 weeks and the slurry is applied on fields as
fertiliser.

Comparison of short- and long-read assemblies
Five samples were collected from the slurry tank over a
five-month period (07/06/2017–10/10/2017) (Supple-
mentary Table 1) with Illumina libraries prepared from
each sample. Initial analysis of the five samples sequen-
cing data using viromeQC [62] indicated that one sam-
ple (PHI75) had high levels of bacterial contamination
(Supplementary Table 1). Sample PHI75 was excluded
from further analysis, with remaining DNA from the

Fig. 1 Overview of the effect of polishing PromethION vOTUs with Illumina reads. a Distribution of the length of vOTUs obtained from Illumina,
PromethION and Hybrid assemblies. b Distribution of predicted ORF lengths obtained from Illumina, PromethION and Hybrid assemblies. c Quality
assessment of vOTUs obtained from Illumina, PromethION and Hybrid assemblies from checkV analysis. d Genome completeness assessed by CheckV
for the Illumina and Hybrid assemblies. The dashed lines in plots a, b and d indicate median values
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other four samples pooled, amplified and sequenced by
PromethION sequencing.
Assembly was carried out with just Illumina or Pro-

methION reads, resulting in 1844 and 4954 vOTUs ≥ 10
kb respectively. The PromethION assembly resulted in
an increase in the median contig size from 12,648 to 14,
658 compared to the Illumina only assembly (Fig. 1a).
The number of predicted genes per kb was also higher
in the PromethION assembly. The increased error rate
of Nanopore sequencing compared to Illumina sequen-
cing is known to result in truncated gene calls [54, 55].
To alleviate this, PromethION contigs were polished
with Illumina reads, creating a hybrid assembly and
resulting in a decrease in the number of genes per kb
from 2.059 (median length: 85 aa) to 1.706 (median
length: 103 aa; Fig. 1b).
As whole genome amplification was used to gain suffi-

cient material for PromethION sequencing, all diversity

statistics and relative abundance data was determined
from Illumina reads only. The percentage of reads that
could be recruited to each different assembly was
assessed. Both the PromethION (32.663%) and hybrid
(33.976%) assemblies recruited more reads than the Illu-
mina assembly (9.048%; Fig. 2b). The median number of
observed vOTUs per sample was higher in the Pro-
methION (3,483) and hybrid (3,532) assemblies than
that of the Illumina assembly (2028; Fig. 2a). The pre-
dicted Shannon and Simpson diversity indices increased
in the hybrid (Shannon: 6.909; Simpson: 0.997) and Pro-
methION (Shannon: 6.867; Simpson: 0.997) assemblies
compared to the Illumina assembly (Shannon: 5.557;
Simpson: 0.972; Fig. 2c, d).
To determine the completeness and quality of the

identified viral contigs, CheckV [72] was used. The hy-
brid assembly contained a lower proportion of low-
quality genomes (65.886%), and a higher proportion of

Fig. 2 Abundance and diversity of vOTUs in different assemblies. a Number of vOTUs observed in each sample obtained from normalised read
counts. The hybrid assembly is the combination of both Illumina and PromethION reads. Prophage were predicted from a bacterial metagenome
from the same sample. Final assembly was combination of Illumina, hybrid and identified active prophage where were dereplicated at 95% ANI.
b Read recruitment over time for the different assemblies. c Shanon’s ⍺-diversity from different assemblies for each sampling point. d Simpson’s
⍺-diversity assemblies for each sampling point
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medium and high-quality (15.015%) genomes than the
Illumina assembly (low-quality: 73.217%; medium and
high-quality: 4.083%; Fig. 1c). Conversely, the Illumina
assembly contained more predicted complete genomes
than the hybrid assembly (Illumina: 167; hybrid: 40).
This may be due to the size selection of PromethION se-
quencing for longer reads, reflected in the longer average
length of the complete genomes obtained from hybrid
assembly (Fig. 1d).
To fully understand the diversity of phages within the

slurry tank, we also investigated the presence of pro-
phage elements in the bacterial fraction. A total of 2892
putative prophages were predicted, of which only 407
could be detected in the free phage fraction by read
mapping. We combined the predicted 407 active pro-
phages, with the Illumina and hybrid assemblies. Redun-
dancy was removed using cluster_phages_genomes.pl
[71], resulting in 7682 vOTUs. Having established the
most comprehensive DNA virome possible, the data was
further analysed.

Characterisation of the slurry virome
The percentage of reads that could be recruited from
each sample varied from 36.943% (PHI73; 07/06/2017;
Fig. 2b) to 39.996% (PHI76; 05/09/2017; Fig. 2b). Across
the five-month sampling period, the Shannon’s index
alpha diversity estimates only varied from 7.02 (PHI77;
10/10/2017) to 7.141 (PHI73; 07/06/2017), suggesting a
stable and diverse virome across seasons (Fig. 2c, d). Al-
though diverse, the virome remained stable across all
sampling points with 55% (4,256) of 7682 vOTUs found
in all samples, and only 477 (~ 6%) of vOTUs unique to
any one sampling point. Furthermore, testing with Dirty-
Genes [75] found no significant difference between the
vOTU abundance profiles of the samples (p = 0.1142
with 1% cut-off; p = 0.863 with 0.5% cut-off). To deter-
mine if the stability in macro-diversity was mirrored by
changes in micro-diversity, we assessed which predicted
phage genes were under positive selection (pN/pS > 1).
Our analysis showed 1610/210,997 genes (0.763%) to be
under positive selection in at least one sample (Supple-
mentary Table 2). From these, putative function could
be assigned to 388 translated genes. The most common
predicted functions were related to phage tail (30), and
phage structure (24).
To give a broader overview of the type of viruses

present in the sample, pVOGs were used to infer the
taxonomic classification of each vOTU. Of the vOTUs
that contained proteins that matched the pVOG data-
bases [67], 91% were associated with the order Caudo-
virales, 2.17% associated with non-tailed viruses and the
remainder not classified. Approximately 10% (710) of
vOTUs were identified as temperate, suggesting that the
community is dominated by lytic phages of the order

Caudovirales. The abundance of temperate vOTUs was
constant across samples, ranging from 5.605% (PHI76;
05/09/2017) to 8.866% (PHI77; 10/10/2017), further
demonstrating the stability of the system across time.
In order to identify the species of phages present

within the slurry, all vOTUs were compared against all
known phages (March, 2020) using MASH [63], with an
average nucleotide identity (ANI) of > 95% as currently
defined as a cut-off for phage species [90]. Only vOTUs
ctg5042 and ctg217 with similarity to Mycoplasma bac-
teriophage L2 (accession BL2CG) and Streptococcus
phage Javan630 (accession MK448997) respectively were
detected. Furthermore, no vOTUs were similar to any
phages that have previously been isolated from this sys-
tem [41–43]. Thus, the vast majority of vOTUs repre-
sent novel phage species.
To gain an understanding of the composition at higher

taxonomic levels, vConTACT2 [84] was run. Only 217
(2.825%) vOTUs clustered with a reference genome, in-
dicating they are related at the genus level (Fig. 3a). Not-
ably, 18 vOTUs formed a cluster with ΦCrAss001
(accession MH675552) and phage IAS (accession
KJ003983), with ctg20 appearing to be a near-complete
phage genome (~ 99 kb; Fig. 4b). The other 7465 vOTUs
clustered only with other vOTUs (3369; 43.856%) or
were singletons (4096; 53.319%), indicating 5242 putative
new genera. These new genera comprised 98.037% of
phages across all samples, suggesting this system is dom-
inated by novel viruses (Fig. 3b). Working on the as-
sumption that if a vOTU within a viral cluster (VC) was
identified as temperate all other vOTUs in the cluster
are, the relative abundance of temperate phages was pre-
dicted. This ranged from 13.09% (PHI76; 05/09/2017) to
16.249% (PHI77; 10/10/2017), further demonstrating the
dominance of lytic viruses and stability of the system
over time (Fig. 3c).
Hosts were predicted for 3189 vOTUs and the system

was found to be dominated by phages predicted to infect
bacteria belonging to Firmicutes and Bacteroidetes, the
most dominant phyla found in the cow gut [91–93]. The
proportions of host-specific abundances appeared stable
across all time points (Supplementary Figure 2).

Identification of CrAss-like phages in the slurry virome
The appearance of a cluster of 18 vOTUs that are simi-
lar to crAssphage was surprising given the discovery and
abundance of crAssphage in human gut viromes [45–47,
94]. To further investigate this, phylogenies based on the
method of Guerin et al. were used [47] for 15 vOTUs
that contained the specific marker genes. All vOTUs
formed part of the previously proposed genus VI [47],
including the near complete phage (ctg20; Fig. 4a; Sup-
plementary Figure 3). Furthermore, the crAssphages
identified from slurry did not form a single
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monophyletic clade. Instead, they were interspersed with
human crAssphages, with some slurry crAssphages more
closely related to human crAssphages than other slurry
crAssphages (Fig. 4a; Supplementary Figure 3). Genome
comparison of ctg20 and phage IAS from genus VI iden-
tified synteny in genome architecture between the
phages, yet there are clearly several areas of divergence
(Fig. 4b). The predicted host of ctg20 was Clostridium,
which contrasts to the Bacteroides and Bacteroidetes that
other crAssphages have been demonstrated or predicted
to infect respectively [46, 95].

Abundance and diversity of auxiliary metabolic genes
In order to understand the role phages might have on
the metabolic function of their hosts, function was
assigned to proteins using eggNOG [79]. Out of 210,997

predicted proteins, only 48,819 (23.137%) could be
assigned a putative function. The most abundant clusters
of orthologous groups (COG) categories [96] were those
associated with viral lifestyle; notably replication, recom-
bination and repair, cell wall/membrane/envelope bio-
genesis, transcription and nucleotide transport and
metabolism (Supplementary Figure 4).
In addition to this, a number of putative AMGs were

identified, including putative ARGs, CAZYmes, assimila-
tory sulfate reduction (ASR) genes, MazG, VapE and Zot
(Supplementary Table 3). These AMGs were found to
be abundant and not constrained to particular set of
phages or hosts they infect (Fig. 3a; Supplementary
Table 4). For instance, carbohydrate-active enzymes
were identified on 91 vOTUs across 77 putative viral
genera, with 41 vOTUs predicted to infect bacteria

Fig. 3 Taxonomic analysis of vOTUs. a vConTACT2 network analysis of vOTUs from this study and a database of phage genomes extracted from
Genbank. The presence of selected viral accessory metabolic genes within viral clusters (VCs) is marked by different colours. b Abundance of viral
clusters that contained ≥ 1 previously known viral genome (known) or no previously known viral genomes (novel). c Abundance of viral clusters
that contained ≥ 1 vOTU predicted to be temperate (temperate) or none (lytic)
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spanning 21 families (Supplementary Table 4), and genes
involved in the sulphur cycle were identified on 148
vOTUs across 138 putative phage genera, with 42
vOTUs predicted to infect bacteria spanning 19 families
(Supplementary Table 4).

Abundance of virulence-associated proteins
Genes encoding Zot were identified on 36 vOTUs across
33 putative genera, predicted to infect five different fam-
ilies of bacteria (Supplementary Table 4). The bacterial
virulence factor VapE which is widespread in the

agricultural pathogens Streptococcus and Dichelobacter
was also detected [97–99]. Recently, it has been demon-
strated that deletions of prophage encoded vapE in
Streptococcus have decreased growth rate in serum com-
pared to wild type strains [100]. VapE homologues were
found on 82 vOTUs (~ 1%) across 65 clusters, including
10 high-quality genomes (Fig. 3a). Bacterial hosts could be
predicted for 17 vOTUs and spanned 10 families of bac-
teria (Supplementary Table 4). One vOTU (ctg217) shared
~ 95% ANI with the prophage Javan630 (accession
MK448997) [100]. Genome comparison between ctg217

Fig. 5 Genome comparison of Streptococcus phage Javan630 and ctg217 was produced using EasyFig with tBLASTx algorithm and 0.001 E value
and length filter 30. The vapE gene that is known virulence factor is marked in red. The two genomes had genomes with an ANI > 95% across
the genome. The insertion of a gene encoding a methyltransferase within the genome of ctg217 is marked in yellow

Fig. 4 Phylogenetic and genomic analysis of slurry crAssphages. a Phylogeny of four genes that encode a primase, terminase, portal protein and
major capsid protein. The analysis followed the same method as described by Guerin et al. [47], with the ten major clades as previously defined
marked. b Genomic comparison between the complete genome of phage ctg20 and the IAS virus was produced using EasyFig with tBLASTx
algorithm and 0.001 E value and length filter 30. Gene products with a predicted function are coloured. The predicted or known host are shown
in parentheses
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and Javan630 revealed highly conserved genomes, with in-
sertion of a gene encoding a putative methyltransferase in
ctg217 being the largest single difference (Fig. 5).

Detection of putative antimicrobial resistance genes
Putative metallo-beta-lactamases (MBLs) were identified
on 146 vOTUs across 116 putative genera, with 60
vOTUs predicted to infect bacterial hosts that spanned
23 families (Supplementary Table 4). Although low in
sequence similarity, structural modelling with Phyre2
[101] found many of these sequences to have the same
predicted structure as the novel blaPNGM-1 beta-
lactamase (100% confidence over 99% coverage) [102].
Furthermore, these sequences contained conserved zinc-
binding motifs characteristic of subclass B3 MBLs [102].
Phylogenetic analysis of putative phage MBLs, along
with representative bacterial MBLs and a known phage-
encoded blaHRVM-1 [103], showed some clustered with
previously characterised bacterial MBLs and others with
a characterised phage blaHRVM-1 (Supplementary Figure

5). In addition to MBLs, two putative multidrug efflux
pumps were identified on two vOTUs predicted to infect
two different bacterial genera (Supplementary Table 4).

Identification of diversity-generating retroelements
In addition to AMGs, we also identified 202 vOTUs that
carry genes encoding a reverse transcriptase. Although
dsDNA phages are known to have genes that encode for
a reverse transcriptase as part of diversity-generating
retroelement (DGR) and the mechanism understood
[104], they are rarely reported. To determine if the iden-
tified genes encoding a reverse transcriptase were part of
a DGR, MetaCCST [81] was used to identify such ele-
ments. Of the 202 vOTUs carrying a reverse transcript-
ase gene, 82 were predicted to be part of a DGR, which
accounts for ~ 1% of vOTUs in the virome. In compari-
son, we calculated the number of DGRs that can be
identified in publicly available phage genomes (12,354
unique genomes -March 2020) to be 0.178% (22
genomes).

Fig. 6 Genome maps of complete genomes containing DGRs. The four phages ctg154, k149_1459596, k149_1764855 and k149_1404499 all contain a
DGR as highlighted by a dashed box. The percentage of reads that contain SNPs that map to the consensus genome was plotted below
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For vOTUS where a complete DGR system (template
repeat, variable repeat, reverse transcriptase and target
gene) could be identified, the most commonly predicted
function of the target gene was a tail fibre. The distribu-
tion of DGRs across 74 viral clusters and 15 families of
predicted host bacteria (Supplementary Table 4) suggest
that this is not a feature that is unique to a particular
VC of phages or hosts they infect (Fig. 3a).
DGRs were predicted to occur on four phages that were

deemed high-quality complete genomes (Fig. 6). These
phage genomes varied in size from 40.3 to 52.07 kb, with
two genomes containing putative integrases (k149_
1459596 and k149_1764855), suggesting they are temper-
ate, with the other two likely lytic phages (ctg154 and
k149_1404499). Interestingly, phage k149_1459596 could
not be detected between 07/06/2017 and 05/09/2017 but
was the most abundant vOTU on 10/10/2017, represent-
ing over 3% of the viral population at that time. As vCon-
TACT2 [84] analysis was unable to classify the phages,
phylogenetic analysis was carried out with gene encoding
TerL to identify the closest known relatives (Supplemen-
tary Figure 6). Phage k149_1459596 closest relative was
Vibrio phage Rostov 7 (accession MK575466) and mem-
ber of the Myoviridae, whilst the closest known members
of the three others phages are all members of the
Siphoviridae.
We hypothesised that the widespread distribution of

DGRs would reflect widespread tropism switching in
these phages, and that hypervariable DGR target genes
could be detected. To investigate this, we examined vari-
ants per gene and calculated which genes were under
positive selection. For the 69 DGR containing vOTUs in
which a target gene could be identified, 22 of these
contained a higher proportion of SNP sites in the DGR
target gene(s) than the average proportion of SNP sites
for non-DGR target genes on that given vOTU. One of
which, a predicted phage tail protein (ctg187_00023),
was predicted to be under positive selection. Thus, many
of the DGR target genes were more variable than other
genes on a given vOTU (Fig. 6).

Discussion
Assembly comparison
Comparison of assemblies between both short-read
and long-read based sequencing methods revealed sig-
nificant differences in the distribution of viral contigs
and the median gene length. As has been found pre-
viously, the use of long-reads alone causes problems
in gene calling due to higher error rates [54]. We
therefore used short-reads to polish the long-read as-
sembly and alleviate these issues [56]. In contrast to
previous methods that used LASLs combined with
ONT MinION sequencing [56], we utilised whole

genome amplification followed by size selection for
PromethION sequencing.
In using MDA for production of PromethION libraries, a

bias in the amplification of ssDNA phage most likely oc-
curred due to well established preference for ssDNA using
this method [105]. A size selection of fragments was applied
prior to promethION sequencing that would likely remove
some of these smaller ssDNA genomes. However, there was
a peak in contigs of 4–5 kb length in the PromethION as-
sembly, indicative of ssDNA genomes. Given the known
MDA bias, we only utilised Illumina libraries (no MDA amp-
lification) for determining the abundance of contigs and esti-
mates of diversity. Comparison of diversity statistics on
Illumina, PromethION and hybrid assemblies suggest Illu-
mina only assemblies may underestimate the diversity within
a sample, whereas diversity estimates even on un-corrected
PromethION assemblies is closer to that of hybrid assem-
blies. We also observed a number of smaller genomes that
were obtained from Illumina only assemblies and were not
present in the PromethION assembly. This likely results as
part of the selection process for high molecular weight DNA
(HMW) for PromethION sequencing that would exclude
some small phage genomes. Therefore, whilst long-reads im-
proved assembly statistics, the use of long-reads alone may
result in exclusion of smaller phage genomes if size selection
is included (as we did) and may introduce a bias of increased
ssDNA genomes.
To provide the most comprehensive set of viral contigs,

we included 230 predicted prophages derived from bacter-
ial metagenomes that could be detected in the free viral
fraction but were not assembled from virome reads, thus
providing a more comprehensive set of viral contigs.

Virome composition
Comparison of diversity across the period of five months
revealed a highly diverse and stable virome across time.
Initially, this may be somewhat surprising given the dy-
namics of the slurry tank, which has constant inflow
from animal waste, farm effluent and rainwater, and is
emptied leaving only ~ 10% of the tank volume every ~ 6
weeks. We reason that most viruses in the slurry tank
will originate from cow faeces, as this is the most dom-
inant input of the tank. Host prediction suggested the
virome was dominated by viruses predicted to infect
bacteria belonging to Firmicutes and Bacteroidetes,
which are the two most abundant bacterial phyla in the
cow rumen and gut [91–93]. To date, there has been
limited study into the dairy cow gut virome and its dy-
namics over time. However, there is a parallel with the
human gut virome which is known to be temporally
stable despite constant influx and efflux [106–108], and
its composition influenced by environmental factors in-
cluding diet [109–111]. Assuming most viruses in the
slurry tank are derived from cow faeces, the controlled
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environment and diet of dairy cattle results in a tempor-
ally stable virome.
Our positive selection analyses found the most common

genes to be under positive selection were those involved
in bacterial attachment and adsorption. We reasoned that
these findings, in conjunction with the extreme stability in
macro-diversity, fit with the Royal Family model of phage-
host dynamics [5]. This model suggests that dominant
phages are optimised to their specific ecological niche,
and in the event of bacterial resistance to infection, a
highly similar phage will fill that niche. Changes in com-
munity composition over time would therefore be
reflected in fine-scale diversity changes, and macro-
diversity would be relatively unchanged [5]. Instead of
population crashes, phages may overcome bacterial resist-
ance through positive selection of genes involved in at-
tachment and adsorption, and are potentially accelerating
the variation of these genes with DGRs.

Diversity-generating retroelements
DGRs were first discovered in the phage BPP-1 (acces-
sion AY029185) where the reverse transcriptase, in com-
bination with terminal repeat, produces an error-prone
cDNA that is then stably incorporated into the tail fibre
[104]. This hypervariable region mediates the host
switching of BPP-1 across different Bordetella species
[104]. Very few DGRs have been found in cultured
phage isolates since, with only two DGRs found in two
temperate vibriophages [112, 113]. We expanded this to
22 phages (0.178%) by searching publicly available phage
genomes. Whilst not common in phage genomes, DGRs
have been identified in bacterial genomes, with phage as-
sociated genes often localised next to the DGRs [113]. A
recent analysis of ~ 32,000 prophages was able to iden-
tify a further 74 DGRs in what are thought to be active
prophages from diverse bacterial phyla [112]. Within this
study, we were able to predict a further 82 DGRs on
phage genomes, four of which are thought to be
complete. Two of these complete phage genomes are
thought to be lytic. In fact, the majority of DGR-
containing contigs in this study are thought to be lytic,
thus demonstrating that DGRs on phage are far more
common than previously found and also observed widely
on lytic phages, which has not previously been observed.
Given the prevalence of DGRs, we expected to find

evidence of widespread phage tropism switching by oc-
currence of SNPs in DGR target genes as others have
done [112]. Whilst SNPs could be identified in DGR tar-
get genes supporting this, many other areas in the same
phage genome contained similar levels of variation. This
is likely a result of multiple evolutionary pressures and
mechanisms that are exerted on a phage genome, with
DGRs only one such mechanism of creating variation.

CrAss-like phages
Currently, crAss-like phages are classified into four sub-
families and ten genera [47], and found in a variety of
environments including human waste [45–47], primate
faeces [114], dog faeces [115] and termite guts [95].
Here, we identified a further 18 crAss-like phages, in-
cluding a near complete genome that belongs to the pro-
posed genus VI [47]. Genus VI is part of the
Betacrassvirinae subfamily and currently only includes
other crAss-like phages occurring within the human gut,
including IAS virus that is highly abundant in HIV-1 in-
fected individuals [116]. Thus, we have expanded the en-
vironments genus VI crAss-like phages are found in to
include non-human hosts. The exact source of these
phages is unknown due to the number of possible inputs
of the slurry tank. However, the most likely reservoir is
from cows, as this is the most abundant input. Unlike its
human counterpart IAS virus, which can account for
90% of viral DNA in human faeces [45], crAss-like
phages in the slurry tank were only found at low levels
(~ 0.065%).
Phylogenetic analysis clearly demonstrated that hu-

man and slurry tank crAss-like phages share a com-
mon ancestor, with genetic exchange between them.
The direction and route of this exchange is unclear.
It may be linked to modern practices of using slurry
on arable land used to produce product consumed by
humans. Alternatively, it may be transferred from
humans to cows via the use of biosolids derived from
human waste that are applied to crops that serve as
animal feed [117].

Auxiliary metabolic genes
We identified a vast array of diverse and abundant
AMGs in dairy farm slurry including putative ARGs,
CAZYmes, ASR genes, MazG, VapE and Zot. Whilst
these have all been identified before in viromes from dif-
ferent environments [16, 29, 30, 100, 118–122], this is
the first time they have been identified in slurry. The
presence of different AMGs is likely a reflection of the
unique composition of slurry that has a very high water
content combined with organic matter. CAZYmes were
detected, which have previously been identified in vir-
omes from mangrove soils and the cow rumen where
they are thought to participate in the decomposition of
organic carbon and boost host energy production during
phage infection [16, 123]. Given the high cellulose and
hemicellulose content of slurry [124], they likely act in a
similar manner within slurry to boost energy for phage
replication. As well as involvement in the cycling of car-
bon, it also appears phage derived genes are involved in
sulphur cycling within slurry. Sulfate-reducing bacteria
(SRB) are active in animal wastes [125, 126], and sulfate
may therefore be limiting within the tank. The ASR
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pathway makes sulphur available for incorporation into
newly synthesised molecules, such as L-cysteine and L-
methionine [127], so the presence of phage encoded
ASR genes on both lytic and temperate phages may
overcome a metabolic bottleneck in amino acid synthe-
sis. Alternatively, the newly synthesised ASR pathway
products may be degraded for energy via the TCA cycle
[128].
The AMG mazG, that is widespread within marine

phages, in particular cyanophages [119, 129, 130], was
also found to be abundant. The cyanophage MazG
protein was originally hypothesised as a modulator of
the host stringent response by altering intracellular
levels of (p)ppGpp [131, 132]. However, more recent
work found this not to be the case [119]. The identi-
fication in a slurry tank suggests this gene is not lim-
ited to marine environments and is widespread in
different phage types, although its precise role re-
mains to be elucidated.

Antibiotic resistance genes
There is ongoing debate as to the importance of
phages in the transfer of ARGs [29, 30]. We identified
ARGs on ~ 2% of vOTUs; accounting for ~ 0.082% of
total predicted phage genes from assembled viral con-
tigs. The predicted ARGs were dominated by putative
MBLs that contain core motifs and structural similar-
ity with the known bacterial and phage MBLs
blaPNGM-1 [102] and blaHRVM-1 [103] respectively.
Thus, are likely functionally active, although this re-
mains to be proven. Our estimate of the abundance
of ARGs in slurry is lower than earlier reports from
other environments that predict an upper estimate of
~ 0.45% of genes in viromes are ARGs [133, 134].
However, some of these studies have used unassem-
bled reads to estimate abundance [133, 134], whereas
we only counted ARGs on contigs that had passed
stringent filtering. Our prediction of ~ 0.082% is simi-
lar to more recent estimates of 0.001% to 0.1% in vir-
omes from six different environments that also used
assembled viromes [30], suggesting that phages might
be an important reservoir of ARGs in slurry.

Virulence-associated proteins
The virulence genes zot and vapE were found to abun-
dant and carried by several vOTUs that were predicted
to infect a range of bacterial hosts. The role of zot has
been well studied in Vibrio cholerae and has previously
been reported in a range of Vibrio and Campylobacter
prophages [120, 121, 135, 136]. Here, we found zot ho-
mologues in phages with predicted hosts other than Vib-
rio and Camplyobacter, further expanding the diversity
of phages that carry these genes.

A similar observation was found for the virulence fac-
tor vapE, which has previously been found in several
agricultural pathogens including Streptococcus and
Dichelobacter [97–99]. VapE encoded on prophage ele-
ments is known to enhance the virulence of Streptococ-
cus and is widespread on Streptococcus prophages [100].
Whilst the role of vapE in virulence has been estab-
lished, previous work did not demonstrate the mobility
of these prophage-like elements. Here, we identified a
high quality near-complete phage genome (ctg217)
which was remarkably similar to the vapE encoding pro-
phage Javan630. Phage Javan630 was originally identified
as a prophage within a mastitis causing strain of Strepto-
coccus uberis isolated from a dairy cow some 15 years
earlier on a dairy farm ~ 100 mi away [100]. The identifi-
cation of ctg217 in the free viral fraction indicates that a
close relative of phage Javan630 is an active prophage.
Along with the numerous other phages encoding vapE
found in the free virome, it suggests that phage is active
in mediating the transfer of vapE. The horizontal trans-
fer of vapE is of particular concern in the dairy environ-
ment where mastitis causing pathogens Strep. uberis,
Strep. agalactiae and Strep. dysgalactiaea are found
[137–139]. Any increase in virulence of these pathogens
is detrimental to the dairy industry as it affects both ani-
mal welfare and economic viability [140]. Streptococcus
infections result in mastitic milk, which cannot be sold
and is often disposed of into slurry tanks. The continual
detection of phages containing vapE in slurry suggests a
likely continual input, given the regular emptying of the
tank. The exact source of phages containing vapE can-
not be ascertained but is likely cow faeces or mastitic
milk. It remains to be determined if the use of slurry as
an organic fertiliser contributes to the spread of phage
encoded virulence factors and toxins. However, their
abundance and presence suggests it is worthy of further
investigation.

Conclusions
We have demonstrated that using a hybrid approach
produces a more complete virome assembly than using
short or long-reads alone. Whilst short-reads may
underestimate the total viral diversity of a given environ-
ment, estimates from long-reads alone were far closer to
the hybrid values than short-reads. The use of low input
amplified genomic DNA allows the technique to be ap-
plied to previously sequenced metagenomes without
need for further DNA extraction. We provide a compre-
hensive analysis of the slurry virome, demonstrating that
the virome contains a diverse and stable viral commu-
nity dominated by lytic viruses of novel genera. Func-
tional annotation revealed a diverse and abundant range
of AMGs including virulence factors, toxins and anti-
biotic resistance genes, suggesting that phages may play
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a significant role in mediating the transfer of these genes
and augmenting both the virulence and antibiotic resist-
ance of their hosts.
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