76 research outputs found

    Run-time detection of faults in autonomous mobile robots based on the comparison of simulated and real robot behaviour

    Get PDF
    © 2014 IEEE. This paper presents a novel approach to the run-time detection of faults in autonomous mobile robots, based on simulated predictions of real robot behaviour. We show that although simulation can be used to predict real robot behaviour, drift between simulation and reality occurs over time due to the reality gap. This necessitates periodic reinitialisation of the simulation to reduce false positives. Using a simple obstacle avoidance controller afflicted with partial motor failure, we show that selecting the length of this reinitialisation time period is non-trivial, and that there exists a trade-off between minimising drift and the ability to detect the presence of faults

    The sinister story of a gauche deliverer and his corrie-fisted tribesmen: Ehud and the left-handed artillery.

    Get PDF
    Bias against left-handers is well-documented and seen in the etymology of "left" and "right" in most languages. The subject of this study, Ehud, lived between the exodus of the Hebrew slaves from Egypt and the establishment of the Israelite kingdom (c1200-1000 BC), at the transition between the Late Bronze Age and Iron Age 1. His left-handedness was crucial to his deliverance of the proto-nation from tyranny, recorded in Judges in the Hebrew Bible. The description of Ehud as left-handed ('iṭṭēr yaḏ-yεmînô) is used once more in the Hebrew Bible, also in Judges, to describe the artillery of Ehud's tribe. The words apparently mean "bound/restricted in the right hand", sometimes interpreted as "ambidextrous". This is unlikely: ambidexterity is uncommon. The artillery used the sling with either hand, but Ehud used his left (śεm'ōl) hand to draw his sword. śεm'ōl, used throughout the Hebrew Bible, means left, without bias or derogatory implications. We suggest that 'iṭṭēr yaḏ-yεmînô was a right-handed bias towards left-handed people, but Ehud's left-handed victory was recognized as significant. Significant enough that (a) the language changed and the biased description was dropped in favour of simple description, and (b) the army changed with the development of left-handed slingers (artillery)

    The need for combining implicit and explicit communication in cooperative robotic systems

    Get PDF
    As the number of robots used in warehouses and manufacturing increases, so too does the need for robots to be able to manipulate objects, not only independently, but also in collaboration with humans and other robots. Our ability to effectively coordinate our actions with fellow humans encompasses several behaviours that are collectively referred to as joint action, and has inspired advances in human-robot interaction by leveraging our natural ability to interpret implicit cues. However, our capacity to efficiently coordinate on object manipulation tasks remains an advantageous process that is yet to be fully exploited in robotic applications. Humans achieve this form of coordination by combining implicit communication (where information is inferred) and explicit communication (direct communication through an established channel) in varying degrees according to the task at hand. Although these two forms of communication have previously been implemented in robotic systems, no system exists that integrates the two in a task-dependent adaptive manner. In this paper, we review existing work on joint action in human-robot interaction, and analyse the state-of-the-art in robot-robot interaction that could act as a foundation for future cooperative object manipulation approaches. We identify key mechanisms that must be developed in order for robots to collaborate more effectively, with other robots and humans, on object manipulation tasks in shared autonomy spaces

    Towards fault diagnosis in robot swarms : An online behaviour characterisation approach

    Get PDF
    Although robustness has been cited as an inherent advantage of swarm robotics systems, it has been shown that this is not always the case. Fault diagnosis will be critical for future swarm robotics systems if they are to retain their advantages (robustness, flexibility and scalability). In this paper, existing work on fault detection is used as a foundation to propose a novel approach for fault diagnosis in swarms based on a behavioural feature vector approach. Initial results show that behavioural feature vectors can be used to reliably diagnose common electro-mechanical fault types in most cases tested

    Exploring Self-Repair in a Coupled Spiking Astrocyte Neural Network

    Get PDF
    It is now known that astrocytes modulate the activity at the tripartite synapses where indirect signaling via the retrograde messengers, endocannabinoids, leads to a localized self-repairing capability. In this paper, a self-repairing spiking astrocyte neural network (SANN) is proposed to demonstrate a distributed self-repairing capability at the network level. The SANN uses a novel learning rule that combines the spike-timing-dependent plasticity (STDP) and Bienenstock, Cooper, and Munro (BCM) learning rules (hereafter referred to as the BSTDP rule). In this learning rule, the synaptic weight potentiation is not only driven by the temporal difference between the presynaptic and postsynaptic neuron firing times but also by the postsynaptic neuron activity. We will show in this paper that the BSTDP modulates the height of the plasticity window to establish an input-output mapping (in the learning phase) and also maintains this mapping (via self-repair) if synaptic pathways become dysfunctional. It is the functional dependence of postsynaptic neuron firing activity on the height of the plasticity window that underpins how the proposed SANN self-repairs on the fly. The SANN also uses the coupling between the tripartite synapses and γ -GABAergic interneurons. This interaction gives rise to a presynaptic neuron frequency filtering capability that serves to route information, represented as spike trains, to different neurons in the subsequent layers of the SANN. The proposed SANN follows a feedforward architecture with multiple interneuron pathways and astrocytes modulate synaptic activity at the hidden and output neuronal layers. The self-repairing capability will be demonstrated in a robotic obstacle avoidance application, and the simulation results will show that the SANN can maintain learned maneuvers at synaptic fault densities of up to 80% regardless of the fault locations

    An FPGA-based hardware-efficient fault-tolerant astrocyte-neuron network

    Get PDF
    The human brain is structured with the capacity to repair itself. This plasticity of the brain has motivated researchers to develop systems which have similar capabilities of fault tolerance and self-repair. Recent research findings have proven that interactions between astrocytes and neurons can actuate brain-like self-repair in a bidirectionally coupled astrocyte-neuron system. This paper presents a hardware realization of the bio-inspired self-repair architecture on an FPGA. We also introduce a reduced architecture for an FPGA-based hardware-efficient fault-tolerant system. This is based on the principle of retrograde signaling in an astrocyte-neuron network by simplifying the calcium dynamics within the astrocyte. The hardware optimized implementation shows more than a 90% decrease in hardware utilization and proves an efficient implementation for a large-scale astrocyte-neuron network. An Average spike rate of 0:027 spikes per clock cycle were observed for both the proposed models of astrocytes in the case of 100% partial fault

    The blockchain: a new framework for robotic swarm systems

    Get PDF
    Swarms of robots will revolutionize many industrial applications, from targeted material delivery to precision farming. However, several of the heterogeneous characteristics that make them ideal for certain future applications --- robot autonomy, decentralized control, collective emergent behavior, etc. --- hinder the evolution of the technology from academic institutions to real-world problems. Blockchain, an emerging technology originated in the Bitcoin field, demonstrates that by combining peer-to-peer networks with cryptographic algorithms a group of agents can reach an agreement on a particular state of affairs and record that agreement without the need for a controlling authority. The combination of blockchain with other distributed systems, such as robotic swarm systems, can provide the necessary capabilities to make robotic swarm operations more secure, autonomous, flexible and even profitable. This work explains how blockchain technology can provide innovative solutions to four emergent issues in the swarm robotics research field. New security, decision making, behavior differentiation and business models for swarm robotic systems are described by providing case scenarios and examples. Finally, limitations and possible future problems that arise from the combination of these two technologies are described
    corecore