35 research outputs found

    First results of the 241Am(n,f) cross section measurement at the Experimental Area 2 of the n_TOF facility at CERN

    Get PDF
    Feasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope 241Am (T1/2= 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the β-decay of 241Pu with a half-life of 14.3 years. The production rate of 241 Am in conventional reactors, including its further accumulation through the decay of 241Pu and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the 241 Am(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the 235U(n,f) and 238U(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results

    Review and new concepts for neutron-capture measurements of astrophysical interest

    Get PDF
    The idea of slow-neutron capture nucleosynthesis formulated in 1957 triggered a tremendous experimental effort in different laboratories worldwide to measure the relevant nuclear physics input quantities, namely (n, γ) cross sections over the stellar temperature range (from few eV up to several hundred keV) for most of the isotopes involved from Fe up to Bi. A brief historical review focused on total energy detectors will be presented to illustrate how advances in instrumentation have led to the assessment of new aspects of s-process nucleosynthesis and to the progressive refinement of stellar models. A summary will be presented on current efforts to develop new detection concepts, such as the Total-Energy Detector with γ-ray imaging capability (i-TED). The latter is based on the simultaneous combination of Compton imaging with neutron time-of-flight (TOF) techniques, in order to achieve a superior level of sensitivity and selectivity in the measurement of stellar neutron capture rates.European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (ERC Consolidator Grant project HYMNS) 681740Instituto de Salud Carlos III Spanish Government FPA2014-52823-C2-1-P FPA2017-83946-C2-1-PConsejo Superior de Investigaciones Cientificas (CSIC) PIE-201750I26Program Severo Ochoa SEV-2014-039

    First results of the Am-241(n,f) cross section measurement at the Experimental Area 2 of the n_TOF facility at CERN

    Get PDF
    This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme Human Resources Development, Education and Lifelong Learning in the context of the project "Strengthening Human Resources Research Potential via Doctorate Research" (MIS-5000432), implemented by the State Scholarships Foundation (IKY). Also, the authors would like to acknowledge the support of the European Commission under the CHANDA project (7th Framework Programme).Feasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope Am-241 (T-1/2= 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the beta-decay of Pu-241 with a half-life of 14.3 years. The production rate of 241Am in conventional reactors, including its further accumulation through the decay of Pu-241 and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the Am-241(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the U-235(n,f) and U-238(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results.European Union (European Social Fund-ESF) through the Operational Programme Human Resources Development, Education and Lifelong Learning MIS-5000432European Commission under the CHANDA project (7th Framework Programme

    Monte Carlo simulations and n-p differential scattering data measured with Proton Recoil Telescopes

    Get PDF
    The authors wish to thank the National Center of the INFN for Research and Development in Information and Communication Technologies (CNAF) for their computational support.The neutron-induced fission cross section of U-235, a standard at thermal energy and between 0.15 MeV and 200 MeV, plays a crucial role in nuclear technology applications. The long-standing need of improving cross section data above 20 MeV and the lack of experimental data above 200 MeV motivated a new experimental campaign at the n_TOF facility at CERN. The measurement has been performed in 2018 at the experimental area 1 (EAR1), located at 185 m from the neutron-producing target (the experiment is presented by A. Manna et al. in a contribution to this conference). The U-235(n,f) cross section from 20 MeV up to about 1 GeV has been measured relative to the H-1(n,n)H-1 reaction, which is considered the primary reference in this energy region. The neutron flux impinging on the U-235 sample (a key quantity for determining the fission events) has been obtained by detecting recoil protons originating from n-p scattering in a C2H4 sample. Two Proton Recoil Telescopes (PRT), consisting of several layers of solid-state detectors and fast plastic scintillators, have been located at proton scattering angles of 25.07 degrees and 20.32 degrees, out of the neutron beam. The PRTs exploit the Delta E-E technique for particle identification, a basic requirement for the rejection of charged particles from neutron-induced reactions in carbon. Extensive Monte Carlo simulations were performed to characterize proton transport through the different slabs of silicon and scintillation detectors, to optimize the experimental set-up and to deduce the efficiency of the whole PRT detector. In this work we compare measured data collected with the PRTs with a full Monte Carlo simulation based on the Geant-4 toolkit

    First results of the Th-230(n,f) cross section measurements at the CERN n_TOF facility

    Get PDF
    The study of neutron-induced reactions on actinides is of considerable importance for the design of advanced nuclear systems and alternative fuel cycles. Specifically, Th-230 is produced from the alpha-decay of U-234 as a byproduct of the Th-232/U-233 fuel cycle, thus the accurate knowledge of its fission cross section is strongly required. However, few experimental datasets exist in literature with large deviations among them, covering the energy range between 0.2 to 25 MeV. In addition, the study of the Th-230(n,f) cross-section is of great interest in the research on the fission process related to the structure of the fission barriers. Previous measurements have revealed a large resonance at E-n=715 keV and additional fine structures, but with high discrepancies among the cross-section values of these measurements. This contribution presents preliminary results of the Th-230(n,f) cross-section measurements at the CERN n_TOF facility. The high purity targets of the natural, but very rare isotope Th-230, were produced at JRC-Geel in Belgium. The measurements were performed at both experimental areas (EAR-1 and EAR-2) of the n_TOF facility, covering a very broad energy range from thermal up to at least 100 MeV. The experimental setup was based on Micromegas detectors with the U-235(n,f) and U-238(n,f) reaction cross-sections used as reference

    Neutron Capture on the s-Process Branching Point 171^{171}Tm via Time-of-Flight and Activation

    Get PDF
    The neutron capture cross sections of several unstable nuclides acting as branching points in the s process are crucial for stellar nucleosynthesis studies. The unstable 171^{171}Tm(t1/2_{1/2}=1.92 yr) is part of the branching around mass A∼170 but its neutron capture cross section as a function of the neutron energy is not known to date. In this work, following the production for the first time of more than 5 mg of 171^{171}Tm at the high-flux reactor Institut Laue-Langevin in France, a sample was produced at the Paul Scherrer Institute in Switzerland. Two complementary experiments were carried out at the neutron time-of-flight facility (n_TOF) at CERN in Switzerland and at the SARAF liquid lithium target facility at Soreq Nuclear Research Center in Israel by time of flight and activation, respectively. The result of the time-of-flight experiment consists of the first ever set of resonance parameters and the corresponding average resonance parameters, allowing us to make an estimation of the Maxwellian-averaged cross sections (MACS) by extrapolation. The activation measurement provides a direct and more precise measurement of the MACS at 30 keV: 384(40) mb, with which the estimation from the n_TOF data agree at the limit of 1 standard deviation. This value is 2.6 times lower than the JEFF-3.3 and ENDF/B-VIII evaluations, 25% lower than that of the Bao et al. compilation, and 1.6 times larger than the value recommended in the KADoNiS (v1) database, based on the only previous experiment. Our result affects the nucleosynthesis at the A∼170 branching, namely, the 171^{171}Yb abundance increases in the material lost by asymptotic giant branch stars, providing a better match to the available pre-solar SiC grain measurements compared to the calculations based on the current JEFF-3.3 model-based evaluation

    Setup for the measurement of the U-235(n,f) cross section relative to n-p scattering up to 1 GeV

    Get PDF
    The neutron induced fission of U-235 is extensively used as a reference for neutron fluence measurements in various applications, ranging from the investigation of the biological effectiveness of high energy neutrons, to the measurement of high energy neutron cross sections of relevance for accelerator driven nuclear systems. Despite its widespread use, no data exist on neutron induced fission of U-235 above 200 MeV. The neutron facility n_TOF offers the possibility to improve the situation. The measurement of U-235(n,f) relative to the differential n-p scattering cross-section, was carried out in September 2018 with the aim of providing accurate and precise cross section data in the energy range from 10 MeV up to 1 GeV. In such measurements, Recoil Proton Telescopes (RPTs) are used to measure the neutron flux while the fission events are detected and counted with dedicated detectors. In this paper the measurement campaign and the experimental set-up are illustrated

    Neutron capture measurement at the n TOF facility of the 204Tl and 205Tl s-process branching points

    Get PDF
    Neutron capture cross sections are one of the fundamental nuclear data in the study of the s (slow) process of nucleosynthesis. More interestingly, the competition between the capture and the decay rates in some unstable nuclei determines the local isotopic abundance pattern. Since decay rates are often sensible to temperature and electron density, the study of the nuclear properties of these nuclei can provide valuable constraints to the physical magnitudes of the nucleosynthesis stellar environment. Here we report on the capture cross section measurement of two thallium isotopes, 204Tl and 205Tl performed by the time-of-flight technique at the n TOF facility at CERN. At some particular stellar s-process environments, the decay of both nuclei is strongly enhanced, and determines decisively the abundance of two s-only isotopes of lead, 204Pb and 205Pb. The latter, as a long-lived radioactive nucleus, has potential use as a chronometer of the last s-process events that contributed to final solar isotopic abundances

    80Se(n,γ) cross-section measurement at CERN n TOF

    Get PDF
    Radiative neutron capture cross section measurements are of fundamental importance for the study of the slow neutron capture (s-) process of nucleosynthesis. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. Particularly relevant are branching nuclei along the s-process path, which are sensitive to the physical conditions of the stellar environment. One such example is the branching at 79Se (3.27 × 105 y), which shows a thermally dependent ß-decay rate. However, an astrophysically consistent interpretation requires also the knowledge of the closest neighbour isotopes involved. In particular, the 80Se(n,?) cross section directly affects the stellar yield of the "cold"branch leading to the formation of the s-only 82Kr. Experimentally, there exists only one previous measurement on 80Se using the time of flight (TOF) technique. However, the latter suffers from some limitations that are described in this presentation. These drawbacks have been significantly improved in a recent measurement at CERN n TOF. This contribution presents a summary of the latter measurement and the status of the data analysis

    Laser-driven neutrons for time-of-flight experiments

    No full text
    Trabajo presentado en las X Jornadas CPAN (Centro Nacional de Física de Partículas, Astropartículas y Nuclear), celebradas en Salamanca (España), del 29 al 31 de octubre de 2018Los haces de neutrones pulsados suponen una valiosa herramienta en física nuclear, con aplicaciones en un amplio abanico de campos. Estos haces de neutrones, producidos actualmente mediante aceleradores de partículas convencionales, se caracterizan mediante “tiempo de vuelo” (TOF, por sus siglas en inglés), lo que nos permite conocer el espectro energético de nuestro haz de neutrones. El uso de esta técnica está limitado por la resolución temporal que podamos obtener, la intensidad de cada pulso, y la frecuencia con las que podamos producirlos. En las últimas décadas, el desarrollo de láseres de pulso ultracorto (femtosegundo) y alta potencia (> 1019 W/cm2) ha abierto la puerta a un gran número de nuevas aplicaciones. Gran parte de los recursos de investigación se han invertido en el estudio de la aceleración de haces de iones asistidos por láser, dirigiendo la mayoría de los esfuerzos en la optimización en la producción de las distintas especies de partículas. El uso de estos haces en la producción de neutrones ha permitido alcanzar valores por pulso competitivos respecto a las fuentes tradicionales lo que podría convertir a este tipo de fuentes láser en una interesante alternativa para la comunidad de haces pulsados. Sin embargo, hasta ahora, estos neutrones no han sido utilizados para llevar a cabo ningún experimento de física nuclear. En este contexto, nuestro grupo de investigación desde la Universidad de Sevilla, y en colaboración con otros grupos de investigación con amplia experiencia en producción, detección y uso de haces pulsados de neutrones en instalaciones convencionales, se ha propuesto realizar una serie de experimentos con el objetivo de producir y caracterizar haces de neutrones pulsados asistidos por láser, optimizando las técnicas de detección, análisis y diagnóstico utilizadas actualmente en fuentes de neutrones convencionales para implementarlas en sistemas de producción láser con el propósito de asentar la viabilidad de llevar a cabo experimentos de física nuclear en este tipo de fuentes e identificar las ventajas y desventajas de este método de producción respecto a los sistemas convencionales. Para ello, se pretende realizar experimentos en diferentes instalaciones láser tanto en España (L2A2 en Santiago de Compostela y CLPU en Salamanca) como en Europa (CILEX en Paris y LEX Photonics en Munich).Peer reviewe
    corecore