253 research outputs found

    A Sox2–Sox9 signalling axis maintains human breast luminal progenitor and breast cancer stem cells

    Get PDF
    Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer

    Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants

    Get PDF
    Heterometallic metal-organic frameworks (MOFs) can offer important advantages over their homometallic counterparts to enable targeted modification of their adsorption, structural response, electronic structure, or chemical reactivity. However, controlling metal distribution in these solids still remains a challenge. The family of mesoporous titanium-organic frameworks, MUV-101(M), displays heterometallic TiM2 nodes assembled from direct reaction of Ti(IV) and M(II) salts. We use the degradation of nerve agent simulants to demonstrate that only TiFe2 nodes are capable of catalytic degradation in non-buffered conditions. By using an integrative experimental-computational approach, we rationalize how the two metals influence each other, in this case, for a synergistic mechanism reminiscent of bimetallic enzymes. Our results highlight the importance of controlling metal distribution at an atomic level to span the interest of heterometallic MOFs to a broad scope of cascade or tandem reactions. Summary Mixed-metal or heterometallic metal-organic frameworks (MOFs) are gaining importance as a route to produce materials with increasing chemical and functional complexities. We report a family of heterometallic titanium frameworks, MUV-101(M), and use them to exemplify the advantages of controlling metal distribution across the framework in heterogeneous catalysis by exploring their activity toward the degradation of a nerve agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of diisopropyl-fluorophosphate (DIFP) in non-buffered aqueous media. This activity cannot be explained only by the association of two metals, but to their synergistic cooperation, to create a whole that is more efficient than the simple sum of its parts. Our simulations suggest a dual-metal mechanism reminiscent of bimetallic enzymes, where the combination of Ti(IV) Lewis acid and Fe(III)–OH Brönsted base sites leads to a lower energy barrier for more efficient degradation of DIFP in absence of a base.Financial support for this work was provided by the Marie Skłodowska-Curie Global Fellowships (749359-EnanSET, N.M.P) within the European Union research and innovation framework programme (2014-2020

    Adherens junctions remain dynamic

    Get PDF
    One of the four principal categories of cell-cell junctions that hold together and shape distinct tissues and organs in vertebrates, adherens junctions (AJs) form cell-cell contacts that connect transmembrane proteins with cytoskeletal actin filaments to provide architectural strength, aid in morphogenesis, and help to maintain proper tissue homeostasis. The classical organization of AJs, consisting of transmembrane cadherins and cytoplasmically attached β-catenins and α-catenins assembled together into a multiprotein complex, was once thought obligatory to craft a robust and stable connection to actin-based cytoskeletal elements, but this architecture has since been challenged and questioned to exist. In a stimulating paper published in a recent issue of BMC Biology, Millán et al. provide convincing evidence that in confluent vascular endothelial cells a novel dynamic vascular endothelial (VE)-cadherin-based AJ type exists that interacts with and physically connects prominent bundles of tension-mediating actin filaments, stress fibers, between neighboring cells. Stress fibers were known previously to link to integrin-based focal adhesion complexes but not to cell-cell adhesion mediating AJs. These new findings, together with previous results support the concept that different AJ subtypes, sharing the same transmembrane cadherin types, can assemble in various configurations to either increase barrier function and promote physical cell-cell adhesion, or to lessen cell-cell adhesion and promote cell separation and migration

    Toxoplasma gondii IgG Serointensity Is Positively Associated With Frailty

    Get PDF
    Background: Persistent inflammation related to aging (inflammaging) is exacerbated by chronic infections and contributes to frailty in older adults. We hypothesized associations between Toxoplasma gondii (T. gondii), a common parasite causing an oligosymptomatic unremitting infection, and frailty, and secondarily between T. gondii and previously reported markers of immune activation in frailty.Methods: We analyzed available demographic, social, and clinical data in Spanish and Portuguese older adults [N = 601; age: mean (SD) 77.3 (8.0); 61% women]. Plasma T. gondii immunoglobulin G (IgG) serointensity was measured with an enzyme-linked immunosorbent assay. The Fried criteria were used to define frailty status. Validated translations of Mini-Mental State Examination, Geriatric Depression Scale, and the Charlson Comorbidity Index were used to evaluate confounders. Previously analyzed biomarkers that were significantly associated with frailty in both prior reports and the current study, and also related to T. gondii serointensity, were further accounted for in multivariable logistic models with frailty as outcome.Results: In T. gondii-seropositives, there was a significant positive association between T. gondii IgG serointensity and frailty, accounting for age (p = .0002), and resisting adjustment for multiple successive confounders. Among biomarkers linked with frailty, kynurenine/tryptophan and soluble tumor necrosis factor receptor II were positively associated with T. gondii serointensity in seropositives (p < .05). Associations with other biomarkers were not significant.Conclusions: This first reported association between T. gondii and frailty is limited by a cross-sectional design and warrants replication. While certain biomarkers of inflammaging were associated with both T. gondii IgG serointensity and frailty, they did not fully mediate the T. gondii-frailty association.This work was supported in part by the Spanish Ministry of Science and Innovation: MCIN/AEI/10.13039/501100011033(grant PID2020-113788RB-I00); Xunta de Galicia (grant ED431B 2022/16); Ministry of Education, Culture and Sport (grant BEAGAL18/00142 to V.V.); and Ministry of Economy and Competitiveness, cofinanced by the European Social Fund (grant RYC-2015-18394 to L.L.-L.). Additionally supported, in part, by the University of Maryland School of Medicine Center for Research on Aging in Baltimore, Maryland; a Clinical Science Research & Development Service Merit Award, Office of Research and Development, U.S. Department of Veterans Affairs, Washington, District of Columbia (grant 1 I01 CX001310-01 to T.T.P.); a R01 grant from the National Institute on Aging, National Institutes of Health, Bethesda, Maryland (grant NIA R01 AG018859 to E.J.K.); and by the Military and Veteran Microbiome: Consortium for Research and Education in Aurora, Colorado (L.A.B., A.J.H., C.A.L., T.T.P.). The opinions expressed in the article belong to the authors and cannot be construed as official positions or opinions of the funders, including the U.S. Veterans Affairs Administration and the National Institutes of Health. Data collected and used for the analyses reported in this article are not available because the initial consent did not include this sharing and because other primary analyses have not been completed. Funding for open access charge: Universidade da Coruna/CISUG

    Liver injury in non-alcoholic fatty liver disease is associated with urea cycle enzyme dysregulation

    Get PDF
    The main aim was to evaluate changes in urea cycle enzymes in NAFLD patients and in two preclinical animal models mimicking this entity. Seventeen liver specimens from NAFLD patients were included for immunohistochemistry and gene expression analyses. Three-hundred-and-eighty-two biopsy-proven NAFLD patients were genotyped for rs1047891, a functional variant located in carbamoyl phosphate synthetase-1 (CPS1) gene. Two preclinical models were employed to analyse CPS1 by immunohistochemistry, a choline deficient high-fat diet model (CDA-HFD) and a high fat diet LDLr knockout model (LDLr −/−). A significant downregulation in mRNA was observed in CPS1 and ornithine transcarbamylase (OTC1) in simple steatosis and NASH-fibrosis patients versus controls. Further, age, obesity (BMI > 30 kg/m2), diabetes mellitus and ALT werefound to be risk factors whereas A-allele from CPS1 was a protective factor from liver fibrosis. CPS1 hepatic expression was diminished in parallel with the increase of fibrosis, and its levels reverted up to normality after changing diet in CDA-HFD mice. In conclusion, liver fibrosis and steatosis were associated with a reduction in both gene and protein expression patterns of mitochondrial urea cycle enzymes. A-allele from a variant on CPS1 may protect from fibrosis development. CPS1 expression is restored in a preclinical model when the main trigger of the liver damage disappears

    Increasing upper limb training intensity in chronic stroke using embodied virtual reality: a pilot study.

    Get PDF
    Technology-mediated neurorehabilitation is suggested to enhance training intensity and therefore functional gains. Here, we used a novel virtual reality (VR) system for task-specific upper extremity training after stroke. The system offers interactive exercises integrating motor priming techniques and embodied visuomotor feedback. In this pilot study, we examined (i) rehabilitation dose and training intensity, (ii) functional improvements, and (iii) safety and tolerance when exposed to intensive VR rehabilitation. Ten outpatient stroke survivors with chronic (&gt;6 months) upper extremity paresis participated in a ten-session VR-based upper limb rehabilitation program (2 sessions/week). All participants completed all sessions of the treatment. In total, they received a median of 403 min of upper limb therapy, with 290 min of effective training. Within that time, participants performed a median of 4713 goal-directed movements. Importantly, training intensity increased progressively across sessions from 13.2 to 17.3 movements per minute. Clinical measures show that despite being in the chronic phase, where recovery potential is thought to be limited, participants showed a median improvement rate of 5.3% in motor function (Fugl-Meyer Assessment for Upper Extremity; FMA-UE) post intervention compared to baseline, and of 15.4% at one-month follow-up. For three of them, this improvement was clinically significant. A significant improvement in shoulder active range of motion (AROM) was also observed at follow-up. Participants reported very low levels of pain, stress and fatigue following each session of training, indicating that the intensive VR intervention was well tolerated. No severe adverse events were reported. All participants expressed their interest in continuing the intervention at the hospital or even at home, suggesting high levels of adherence and motivation for the provided intervention. This pilot study showed how a dedicated VR system could deliver high rehabilitation doses and, importantly, intensive training in chronic stroke survivors. FMA-UE and AROM results suggest that task-specific VR training may be beneficial for further functional recovery both in the chronic stage of stroke. Longitudinal studies with higher doses and sample sizes are required to confirm the therapy effectiveness. This trial was retrospectively registered at ClinicalTrials.gov database (registration number NCT03094650 ) on 14 March 2017

    Adherence to Interferon β-1b Treatment in Patients with Multiple Sclerosis in Spain

    Get PDF
    Adherence to interferon β-1b (INFβ-1b) therapy is essential to maximize the beneficial effects of treatment in multiple sclerosis (MS). For that reason, the main objectives of this study are to assess adherence to INFβ-1b in patients suffering from MS in Spain, and to identify the factors responsible for adherence in routine clinical practice.This was an observational, retrospective, cross-sectional study including 120 Spanish patients with MS under INFβ-1b treatment. Therapeutic adherence was assessed with Morisky-Green test and with the percentage of doses received. The proportion of adherent patients assessed by Morisky-Green test was 68.3%, being indicative of poor adherence. Nevertheless, the percentage of doses received, which was based on the number of injected medication, was 94.3%. The main reason for missing INFβ-1b injections was forgetting some of the administrations (64%). Therefore, interventions that diminish forgetfulness might have a positive effect in the proportion of adherent patients and in the percentage of doses received. In addition, age and comorbidities had a significant effect in the number of doses injected per month, and should be considered in the management of adherence in MS patients.Among all the available methods for assessing adherence, the overall consumption of the intended dose has to be considered when addressing adherence

    The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae).

    Get PDF
    A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient

    Occurrence of Ancylostoma in dogs, cats and public places from Andradina city, São Paulo state, Brazil

    Get PDF
    The aim of this study was to determine the frequency and intensity of Ancylostoma spp. in 33 dogs and 52 cats by means of coproparasitological examinations and parasitological necropsy, and assess the presence of contaminated feces with eggs of that parasite in public places of Andradina Municipality, São Paulo State, Brazil. Willis-Mollay and Sedimentation methods indicated Ancylostoma spp. eggs in 87.8% (29/33) dogs and 94.2% (49/52) cats. The species A. caninum and A. braziliense were found in 63.6% (21/33) and 30.3% (10/33) of dogs, respectively. Considering cats, 67.3% (35/52) were parasitized by A. braziliense, 21.1% (11/52) by A. caninum, and 9.6% (5/52) by A. tubaeforme. Forty-two canine fecal samples were collected from public environments, including 23 squares/gardens and 19 streets/sidewalks. Positive samples for Ancylostoma spp. accounted for 64.3% (27/42); squares/gardens had 60.9% (14/23) positive samples, and streets and sidewalks, 68.4% (13/19). No association was observed between the number of Ancylostoma spp parasites and age, sex and breed of the animals and also the ratio of EPG counts and the parasitic intensity observed at necropsy (p > 0.05). Based on the high occurrence of hookworm in dogs and cats in this study, the treatment with anti helminthics are needed even in those animals with negative stool tests, besides adopting control of the number of animals in public places, in order to decrease the likelihood of environmental contamination, since this parasite represents a potential hazard to human and animal health
    corecore