215 research outputs found

    Learning and Using Abstract Words: Evidence from Clinical Populations

    Get PDF
    Lorusso ML, Burigo M, Tavano A, et al. Learning and Using Abstract Words: Evidence from Clinical Populations. BioMed Research International. 2017;2017:1-8

    Identification of DNA methyltransferases and demethylases in Solanum melongena L., and their transcription dynamics during fruit development and after salt and drought stresses

    Get PDF
    DNA methylation through the activity of cytosine-5-methyltransferases (C5-MTases) and DNA demethylases plays important roles in genome protection as well as in regulating gene expression during plant development and plant response to environmental stresses. In this study, we report on a genome-wide identification of six C5-MTases (SmelMET1, SmelCMT2, SmelCMT3a, SmelCMT3b, SmelDRM2, SmelDRM3) and five demethylases (SmelDemethylase_1, SmelDemethylase_2, SmelDemethylase_3, SmelDemethylase_4, SmelDemethylase_5) in eggplant. Gene structural characteristics, chromosomal localization and phylogenetic analyses are also described. The transcript profiling of both C5-MTases and demethylases was assessed at three stages of fruit development in three eggplant commercial F1 hybrids: i.e. 'Clara', 'Nite Lady' and 'Bella Roma', representative of the eggplant berry phenotypic variation. The trend of activation of C5-MTases and demethylase genes varied in function of the stage of fruit development and was genotype dependent. The transcription pattern of C5MTAses and demethylases was also assessed in leaves of the F1 hybrid 'Nite Lady' subjected to salt and drought stresses. A marked up-regulation and down-regulation of some C5-MTases and demethylases was detected, while others did not vary in their expression profile. Our results suggest a role for both C5-MTases and demethylases during fruit development, as well as in response to abiotic stresses in eggplant, and provide a starting framework for supporting future epigenetic studies in the species

    Investigating Functioning Profile of Adolescents with Anorexia before and during the COVID-19 Pandemic: A Cross-Sectional Study on Mentalizing, Alexithymia, and Impulsiveness

    Get PDF
    Anorexia nervosa (AN) usually emerges in adolescence when important changes occur in cognitive, emotional, and social processes. Mentalizing, alexithymia, and impulsiveness represent key dimensions for the understanding and interpretation of psychological difficulties in AN. The outbreak of the COVID-19 pandemic has impacted adolescents with AN, showing a worsening of the disease. The main aims of the present paper are (1) to compare adolescents with AN before and during the COVID-19 pandemic and (2) to explore the relationship between mentalizing, alexithymia, impulsiveness, and psychological difficulties related to eating disorders in adolescents with AN during the COVID-19 pandemic. One hundred and ninety-six AN female adolescents (N = 94 before COVID-19; N = 102 during COVID-19) participated in this study. The results show that adolescents with AN during the COVID-19 pandemic had a more impaired functioning profile than the before COVID-19 group. Mentalizing, alexithymia, and impulsiveness had a predictive role on psychological difficulties related to eating disorders in adolescents with AN during the COVID-19 pandemic. In conclusion, our data reveal that the COVID-19 pandemic has likely represented a stress condition that affects mental health; worsening the severity of adolescents with AN clinical condition. Lastly, predictive patterns suggest the existence of a link between difficulties in the ability to face the problems of the present time using effective strategies and the severity of psychological symptoms

    Recurrence and Familial Inheritance of Intronic NIPBL Pathogenic Variant Associated With Mild CdLS

    Get PDF
    Splicing pathogenic variants account for a notable fraction of NIPBL alterations underlying Cornelia de Lange syndrome but are likely underrepresented, due to overlooking of non-canonical intronic variants by traditional and contemporary sequencing methods. We describe five subjects, belonging to three families, displaying a mild Cornelia de Lange syndrome phenotype who carry the NIPBL pathogenic variant c.5329–15A>G, affecting the IVS27 branch site, yet reported in a single case. By RNA analysis we evidenced two alternative transcripts: the exon 28 in frame skipped transcript, described in the published case and an out-of-frame transcript retaining 14 nucleotides of IVS27 3′end. Even if both aberrant transcripts are at negligible levels, their presence justifies the CdLS phenotype shared by our patients consisting of borderline-mild cognitive impairment and slight but typical facial dysmorphisms. Transmission of the pathogenic variant from pauci-symptomatic mother to her siblings emphasizes the need of molecular diagnosis extended to deep intronic regions in patients with subtle but recognizable CdLS phenotype

    Advances in Quercus ilex L. breeding: the CRISPR/Cas9 technology via ribonucleoproteins

    Get PDF
    The CRISPR/Cas9 ribonucleoprotein (RNP)-mediated technology represents a fascinating tool for modifying gene expression or mutagenesis as this system allows for obtaining transgene-free plants, avoiding exogenous DNA integration. Holm oak (Quercus ilex) has an important social, economic, and ecological role in the Mediterranean climate zones of Western Europe and North Africa and is severely affected by oak decline syndrome. Here we report the first example of the application of the CRISPR/Cas9-RNP technology in holm oak. Firstly, we evaluated the protoplast isolation from both in vitro leaves and proembryogenic masses. Proembryogenic masses represented the best material to get high protoplast yield (11 x 106 protoplasts/ml) and viability. Secondly, the protoplast transfection ability was evaluated through a vector expressing green fluorescence protein as marker gene of transfection, reaching a transfection percentage of 62% after 24 hours. CRISPR/Cas9 RNPs were successfully delivered into protoplasts resulting in 5.6% ± 0.5% editing efficiency at phytoene desaturase (pds) target genomic region. Protoplasts were then cultured in semisolid media and, after 45 days in culture, developed embryogenic calli were observed in a Murashige and Skoog media with half concentration of NH4NO3 and KNO3 supplemented with 0.1 mg/L benzylaminopurine and 0.1 mg/L 2,4-dichlorophenoxyacetic acid

    Simultaneous CRISPR/Cas9 Editing of Three PPO Genes Reduces Fruit Flesh Browning in Solanum melongena L.

    Get PDF
    [EN] Polyphenol oxidases (PPOs) catalyze the oxidization of polyphenols, which in turn causes the browning of the eggplant berry flesh after cutting. This has a negative impact on fruit quality for both industrial transformation and fresh consumption. Ten PPO genes (named SmelPPO1-10) were identified in eggplant thanks to the recent availability of a high-quality genome sequence. A CRISPR/Cas9-based mutagenesis approach was applied to knock-out three target PPO genes (SmelPPO4, SmelPPO5, and SmelPPO6), which showed high transcript levels in the fruit after cutting. An optimized transformation protocol for eggplant cotyledons was used to obtain plants in which Cas9 is directed to a conserved region shared by the three PPO genes. The successful editing of the SmelPPO4, SmelPPO5, and SmelPPO6 loci of in vitro regenerated plantlets was confirmed by Illumina deep sequencing of amplicons of the target sites. Besides, deep sequencing of amplicons of the potential off-target loci identified in silico proved the absence of detectable non-specific mutations. The induced mutations were stably inherited in the T-1 and T-2 progeny and were associated with a reduced PPO activity and browning of the berry flesh after cutting. Our results provide the first example of the use of the CRISPR/Cas9 system in eggplant for biotechnological applications and open the way to the development of eggplant genotypes with low flesh browning which maintain a high polyphenol content in the berries.Research was financially supported by the project CRISPR/Cas9-mediated gene knock-out in eggplant financed by Compagnia San Paolo.Maioli, A.; Gianoglio, S.; Moglia, A.; Acquadro, A.; Valentino, D.; Milani, AM.; Prohens Tomás, J.... (2020). Simultaneous CRISPR/Cas9 Editing of Three PPO Genes Reduces Fruit Flesh Browning in Solanum melongena L. Frontiers in Plant Science. 11:1-13. https://doi.org/10.3389/fpls.2020.607161S11311Andersson, M., Turesson, H., Nicolia, A., Fält, A.-S., Samuelsson, M., & Hofvander, P. (2016). Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Reports, 36(1), 117-128. doi:10.1007/s00299-016-2062-3Bachem, C. W. B., Speckmann, G.-J., van der Linde, P. C. G., Verheggen, F. T. M., Hunt, M. D., Steffens, J. C., & Zabeau, M. (1994). Antisense Expression of Polyphenol Oxidase Genes Inhibits Enzymatic Browning in Potato Tubers. Bio/Technology, 12(11), 1101-1105. doi:10.1038/nbt1194-1101Barchi, L., Pietrella, M., Venturini, L., Minio, A., Toppino, L., Acquadro, A., … Rotino, G. L. (2019). A chromosome-anchored eggplant genome sequence reveals key events in Solanaceae evolution. Scientific Reports, 9(1). doi:10.1038/s41598-019-47985-wBellés, J. M., Garro, R., Pallás, V., Fayos, J., Rodrigo, I., & Conejero, V. (2005). Accumulation of gentisic acid as associated with systemic infections but not with the hypersensitive response in plant-pathogen interactions. Planta, 223(3), 500-511. doi:10.1007/s00425-005-0109-8Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114-2120. doi:10.1093/bioinformatics/btu170Bortesi, L., Zhu, C., Zischewski, J., Perez, L., Bassié, L., Nadi, R., … Schillberg, S. (2016). Patterns of CRISPR/Cas9 activity in plants, animals and microbes. Plant Biotechnology Journal, 14(12), 2203-2216. doi:10.1111/pbi.12634Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. doi:10.1016/0003-2697(76)90527-3Chi, M., Bhagwat, B., Lane, W. D., Tang, G., Su, Y., Sun, R., … Xiang, Y. (2014). Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biology, 14(1). doi:10.1186/1471-2229-14-62Clement, K., Rees, H., Canver, M. C., Gehrke, J. M., Farouni, R., Hsu, J. Y., … Pinello, L. (2019). CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nature Biotechnology, 37(3), 224-226. doi:10.1038/s41587-019-0032-3Coetzer, C., Corsini, D., Love, S., Pavek, J., & Tumer, N. (2001). Control of Enzymatic Browning in Potato (Solanum tuberosum L.) by Sense and Antisense RNA from Tomato Polyphenol Oxidase. Journal of Agricultural and Food Chemistry, 49(2), 652-657. doi:10.1021/jf001217fCong, L., & Zhang, F. (2014). Genome Engineering Using CRISPR-Cas9 System. Methods in Molecular Biology, 197-217. doi:10.1007/978-1-4939-1862-1_10Docimo, T., Francese, G., De Palma, M., Mennella, D., Toppino, L., Lo Scalzo, R., … Tucci, M. (2016). Insights in the Fruit Flesh Browning Mechanisms in Solanum melongena Genetic Lines with Opposite Postcut Behavior. Journal of Agricultural and Food Chemistry, 64(22), 4675-4685. doi:10.1021/acs.jafc.6b00662Doudna, J. A., & Charpentier, E. (2014). The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213). doi:10.1126/science.1258096Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., … Zhu, J.-K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229-1232. doi:10.1038/cr.2013.114Fu, Y., Foden, J. A., Khayter, C., Maeder, M. L., Reyon, D., Joung, J. K., & Sander, J. D. (2013). High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 31(9), 822-826. doi:10.1038/nbt.2623Gao, J., Wang, G., Ma, S., Xie, X., Wu, X., Zhang, X., … Xia, Q. (2014). CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Molecular Biology, 87(1-2), 99-110. doi:10.1007/s11103-014-0263-0García-Fortea, E., Lluch-Ruiz, A., Pineda-Chaza, B. J., García-Pérez, A., Bracho-Gil, J. P., Plazas, M., … Prohens, J. (2020). A highly efficient organogenesis protocol based on zeatin riboside for in vitro regeneration of eggplant. BMC Plant Biology, 20(1). doi:10.1186/s12870-019-2215-yGonzález, M. N., Massa, G. A., Andersson, M., Turesson, H., Olsson, N., Fält, A.-S., … Feingold, S. E. (2020). Reduced Enzymatic Browning in Potato Tubers by Specific Editing of a Polyphenol Oxidase Gene via Ribonucleoprotein Complexes Delivery of the CRISPR/Cas9 System. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.01649Guri, A., & Sink, K. C. (1988). Agrobacterium Transformation of Eggplant. Journal of Plant Physiology, 133(1), 52-55. doi:10.1016/s0176-1617(88)80083-xHahn, F., & Nekrasov, V. (2018). CRISPR/Cas precision: do we need to worry about off-targeting in plants? Plant Cell Reports, 38(4), 437-441. doi:10.1007/s00299-018-2355-9Jukanti, A. K., & Bhatt, R. (2014). Eggplant (Solanum melongena L.) polyphenol oxidase multi-gene family: a phylogenetic evaluation. 3 Biotech, 5(1), 93-99. doi:10.1007/s13205-014-0195-zKarunarathna, N. L., Wang, H., Harloff, H., Jiang, L., & Jung, C. (2020). Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. Plant Biotechnology Journal, 18(11), 2251-2266. doi:10.1111/pbi.13381Kaushik, P., Gramazio, P., Vilanova, S., Raigón, M. D., Prohens, J., & Plazas, M. (2017). Phenolics content, fruit flesh colour and browning in cultivated eggplant, wild relatives and interspecific hybrids and implications for fruit quality breeding. Food Research International, 102, 392-401. doi:10.1016/j.foodres.2017.09.028Li, L., & Steffens, J. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215(2), 239-247. doi:10.1007/s00425-002-0750-4Li, Z., Liu, Z.-B., Xing, A., Moon, B. P., Koellhoffer, J. P., Huang, L., … Cigan, A. M. (2015). Cas9-Guide RNA Directed Genome Editing in Soybean. Plant Physiology, 169(2), 960-970. doi:10.1104/pp.15.00783Llorente, B., Alonso, G. D., Bravo-Almonacid, F., Rodríguez, V., López, M. G., Carrari, F., … Flawiá, M. M. (2011). Safety assessment of nonbrowning potatoes: opening the discussion about the relevance of substantial equivalence on next generation biotech crops. Plant Biotechnology Journal, 9(2), 136-150. doi:10.1111/j.1467-7652.2010.00534.xLlorente, B., López, M. G., Carrari, F., Asís, R., Di Paola Naranjo, R. D., Flawiá, M. M., … Bravo-Almonacid, F. (2014). Downregulation of polyphenol oxidase in potato tubers redirects phenylpropanoid metabolism enhancing chlorogenate content and late blight resistance. Molecular Breeding, 34(4), 2049-2063. doi:10.1007/s11032-014-0162-8Ma, X., Zhang, Q., Zhu, Q., Liu, W., Chen, Y., Qiu, R., … Liu, Y.-G. (2015). A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Molecular Plant, 8(8), 1274-1284. doi:10.1016/j.molp.2015.04.007Mahanil, S., Attajarusit, J., Stout, M. J., & Thipyapong, P. (2008). Overexpression of tomato polyphenol oxidase increases resistance to common cutworm. Plant Science, 174(4), 456-466. doi:10.1016/j.plantsci.2008.01.006Menin, B., Moglia, A., Comino, C., Hakkert, J. C., Lanteri, S., & Beekwilder, J. (2013). In vitrocallus-induction in globe artichoke (Cynara cardunculusL. var.scolymus) as a system for the production of caffeoylquinic acids. The Journal of Horticultural Science and Biotechnology, 88(5), 537-542. doi:10.1080/14620316.2013.11513003Mennella, G., Lo Scalzo, R., Fibiani, M., D’Alessandro, A., Francese, G., Toppino, L., … Rotino, G. L. (2012). Chemical and Bioactive Quality Traits During Fruit Ripening in Eggplant (S. melongena L.) and Allied Species. Journal of Agricultural and Food Chemistry, 60(47), 11821-11831. doi:10.1021/jf3037424Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., … Qu, L.-J. (2013). Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23(10), 1233-1236. doi:10.1038/cr.2013.123Mishra, B. B., Gautam, S., & Sharma, A. (2013). Free phenolics and polyphenol oxidase (PPO): The factors affecting post-cut browning in eggplant (Solanum melongena). Food Chemistry, 139(1-4), 105-114. doi:10.1016/j.foodchem.2013.01.074Muktadir, M. A., Habib, M. A., Khaleque Mian, M. A., & Yousuf Akhond, M. A. (2016). Regeneration efficiency based on genotype, culture condition and growth regulators of eggplant (Solanum melongena L.). Agriculture and Natural Resources, 50(1), 38-42. doi:10.1016/j.anres.2014.10.001Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., … XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomedicine & Pharmacotherapy, 97, 67-74. doi:10.1016/j.biopha.2017.10.064Nonaka, S., Arai, C., Takayama, M., Matsukura, C., & Ezura, H. (2017). Efficient increase of ɣ-aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Scientific Reports, 7(1). doi:10.1038/s41598-017-06400-yPan, C., Ye, L., Qin, L., Liu, X., He, Y., Wang, J., … Lu, G. (2016). CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6(1). doi:10.1038/srep24765Peterson, B. A., Haak, D. C., Nishimura, M. T., Teixeira, P. J. P. L., James, S. R., Dangl, J. L., & Nimchuk, Z. L. (2016). Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis. PLOS ONE, 11(9), e0162169. doi:10.1371/journal.pone.0162169Plazas, M., López-Gresa, M. P., Vilanova, S., Torres, C., Hurtado, M., Gramazio, P., … Prohens, J. (2013). Diversity and Relationships in Key Traits for Functional and Apparent Quality in a Collection of Eggplant: Fruit Phenolics Content, Antioxidant Activity, Polyphenol Oxidase Activity, and Browning. Journal of Agricultural and Food Chemistry, 61(37), 8871-8879. doi:10.1021/jf402429kProhens, J., Rodríguez-Burruezo, A., Raigón, M. D., & Nuez, F. (2007). Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. Journal of the American Society for Horticultural Science, 132(5), 638-646. doi:10.21273/jashs.132.5.638Rommens, C. M., Ye, J., Richael, C., & Swords, K. (2006). Improving Potato Storage and Processing Characteristics through All-Native DNA Transformation. Journal of Agricultural and Food Chemistry, 54(26), 9882-9887. doi:10.1021/jf062477lRotino, G. L., Sala, T., & Toppino, L. (2013). Eggplant. Alien Gene Transfer in Crop Plants, Volume 2, 381-409. doi:10.1007/978-1-4614-9572-7_16Saini, D. K., & Kaushik, P. (2019). Visiting eggplant from a biotechnological perspective: A review. Scientia Horticulturae, 253, 327-340. doi:10.1016/j.scienta.2019.04.042Sashidhar, N., Harloff, H. J., Potgieter, L., & Jung, C. (2020). Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnology Journal, 18(11), 2241-2250. doi:10.1111/pbi.13380Shetty, S. M., Chandrashekar, A., & Venkatesh, Y. P. (2011). Eggplant polyphenol oxidase multigene family: Cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochemistry, 72(18), 2275-2287. doi:10.1016/j.phytochem.2011.08.028Svitashev, S., Young, J. K., Schwartz, C., Gao, H., Falco, S. C., & Cigan, A. M. (2015). Targeted Mutagenesis, Precise Gene Editing, and Site-Specific Gene Insertion in Maize Using Cas9 and Guide RNA. Plant Physiology, 169(2), 931-945. doi:10.1104/pp.15.00793Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M., Pavan, S., & Montemurro, C. (2017). Polyphenol Oxidases in Crops: Biochemical, Physiological and Genetic Aspects. International Journal of Molecular Sciences, 18(2), 377. doi:10.3390/ijms18020377Thipyapong, P., Hunt, M. D., & Steffens, J. C. (2004). Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 220(1), 105-117. doi:10.1007/s00425-004-1330-6Thipyapong, P., Joel, D. M., & Steffens, J. C. (1997). Differential Expression and Turnover of the Tomato Polyphenol Oxidase Gene Family during Vegetative and Reproductive Development. Plant Physiology, 113(3), 707-718. doi:10.1104/pp.113.3.707Van Eck, J. (2018). Genome editing and plant transformation of solanaceous food crops. Current Opinion in Biotechnology, 49, 35-41. doi:10.1016/j.copbio.2017.07.012Wang, Z.-P., Xing, H.-L., Dong, L., Zhang, H.-Y., Han, C.-Y., Wang, X.-C., & Chen, Q.-J. (2015). Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biology, 16(1). doi:10.1186/s13059-015-0715-0Wolt, J. D., Wang, K., & Yang, B. (2015). The Regulatory Status of Genome‐edited Crops. Plant Biotechnology Journal, 14(2), 510-518. doi:10.1111/pbi.12444Zhang, Q., Xing, H.-L., Wang, Z.-P., Zhang, H.-Y., Yang, F., Wang, X.-C., & Chen, Q.-J. (2018). Potential high-frequency off-target mutagenesis induced by CRISPR/Cas9 in Arabidopsis and its prevention. Plant Molecular Biology, 96(4-5), 445-456. doi:10.1007/s11103-018-0709-xZheng, N., Li, T., Dittman, J. D., Su, J., Li, R., Gassmann, W., … Yang, B. (2020). CRISPR/Cas9-Based Gene Editing Using Egg Cell-Specific Promoters in Arabidopsis and Soybean. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.0080

    Bifidobacterium bifidum PRL2010 alleviates intestinal ischemia/reperfusion injury

    Get PDF
    Mesenteric ischemia/reperfusion is a clinical emergency with high morbidity and mortality due to the transient reduction of blood supply to the bowel. In recent years, the critical contribution of gut microbiome to human health and proper gastrointestinal functions has gradually emerged. In the current study, we investigated the protective effects of five days supplementation with Bifidobacterium bifidum PRL2010 in a murine model of gut ischemia/reperfusion. Our findings indicate that animals pretreated with B. bifidum PRL2010 showed lower neutrophil recruitment in the lungs, remarkably reduced bacterial translocation and decreased transcription levels of TNFalpha and IL-10 both in liver and kidneys, at the same time increasing those of IL-12 in kidneys. Inhibiting the adhesion of pathogenic bacteria and boosting host innate immunity responses are among the possible protective mechanisms enacted by the probiotic. These results demonstrate that short-period treatment with B. bifidum PRL2010 is a potential strategy to dampen remote organ injury due to mesenteric ischemia/reperfusion

    Improving quality in nanoparticle-induced cytotoxicity testing by a tiered inter-laboratory comparison study

    Get PDF
    The quality and relevance of nanosafety studies constitute major challenges to ensure their key role as a supporting tool in sustainable innovation, and subsequent competitive economic advantage. However, the number of apparently contradictory and inconclusive research results has increased in the past few years, indicating the need to introduce harmonized protocols and good practices in the nanosafety research community. Therefore, we aimed to evaluate if best-practice training and inter-laboratory comparison (ILC) of performance of the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay for the cytotoxicity assessment of nanomaterials among 15 European laboratories can improve quality in nanosafety testing. We used two well-described model nanoparticles, 40-nm carboxylated polystyrene (PS-COOH) and 50-nm amino-modified polystyrene (PS-NH2). We followed a tiered approach using well-developed standard operating procedures (SOPs) and sharing the same cells, serum and nanoparticles. We started with determination of the cell growth rate (tier 1), followed by a method transfer phase, in which all laboratories performed the first ILC on the MTS assay (tier 2). Based on the outcome of tier 2 and a survey of laboratory practices, specific training was organized, and the MTS assay SOP was refined. This led to largely improved intra- and inter-laboratory reproducibility in tier 3. In addition, we confirmed that PS-COOH and PS-NH2 are suitable negative and positive control nanoparticles, respectively, to evaluate impact of nanomaterials on cell viability using the MTS assay. Overall, we have demonstrated that the tiered process followed here, with the use of SOPs and representative control nanomaterials, is necessary and makes it possible to achieve good inter-laboratory reproducibility, and therefore high-quality nanotoxicological data.Web of Science108art. no. 143
    corecore