69 research outputs found

    Loop Corrections in the Spectrum of 2D Hawking Radiation

    Full text link
    We determine the one-loop and the two-loop back-reaction corrections in the spectrum of the Hawking radiation for the CGHS model of 2d dilaton gravity by evaluating the Bogoliubov coefficients for a massless scalar field propagating on the corresponding backgrounds. Since the back-reaction can induce a small shift in the position of the classical horizon, we find that a positive shift leads to a non-Planckian late-time spectrum, while a null or a negative shift leads to a Planckian late-time spectrum in the leading-order stationary-point approximation. In the one-loop case there are no corrections to the classical Hawking temperature, while in the two-loop case the temperature is three times greater than the classical value. We argue that these results are consistent with the behaviour of the Hawking flux obtained from the operator quantization only for the times which are not too late, in accordance with the limits of validity of the semiclassical approximation.Comment: 20 pages, latex, no figure

    Spin Foam Models of Yang-Mills Theory Coupled to Gravity

    Full text link
    We construct a spin foam model of Yang-Mills theory coupled to gravity by using a discretized path integral of the BF theory with polynomial interactions and the Barret-Crane ansatz. In the Euclidian gravity case we obtain a vertex amplitude which is determined by a vertex operator acting on a simple spin network function. The Euclidian gravity results can be straightforwardly extended to the Lorentzian case, so that we propose a Lorentzian spin foam model of Yang-Mills theory coupled to gravity.Comment: 10 page

    Remarks on the Reduced Phase Space of (2+1)-Dimensional Gravity on a Torus in the Ashtekar Formulation

    Get PDF
    We examine the reduced phase space of the Barbero-Varadarajan solutions of the Ashtekar formulation of (2+1)-dimensional general relativity on a torus. We show that it is a finite-dimensional space due to existence of an infinite dimensional residual gauge invariance which reduces the infinite-dimensional space of solutions to a finite-dimensional space of gauge-inequivalent solutions. This is in agreement with general arguments which imply that the number of physical degrees of freedom for (2+1)-dimensional Ashtekar gravity on a torus is finite.Comment: 13 pages, Latex. More details have been included and the expression for the finite residual gauge transformations has been worked ou

    Quantum Gravity Vacuum and Invariants of Embedded Spin Networks

    Get PDF
    We show that the path integral for the three-dimensional SU(2) BF theory with a Wilson loop or a spin network function inserted can be understood as the Rovelli-Smolin loop transform of a wavefunction in the Ashtekar connection representation, where the wavefunction satisfies the constraints of quantum general relativity with zero cosmological constant. This wavefunction is given as a product of the delta functions of the SU(2) field strength and therefore it can be naturally associated to a flat connection spacetime. The loop transform can be defined rigorously via the quantum SU(2) group, as a spin foam state sum model, so that one obtains invariants of spin networks embedded in a three-manifold. These invariants define a flat connection vacuum state in the q-deformed spin network basis. We then propose a modification of this construction in order to obtain a vacuum state corresponding to the flat metric spacetime.Comment: 15 pages, revised version to appear in Class. Quant. Gra

    Quantum Cosmological Approach to 2d Dilaton Gravity

    Full text link
    We study the canonical quantization of the induced 2d-gravity and the pure gravity CGHS-model on a closed spatial section. The Wheeler-DeWitt equations are solved in (spatially homogeneous) choices of the internal time variable and the space of solutions is properly truncated to provide the physical Hilbert space. We establish the quantum equivalence of both models and relate the results with the covariant phase-space quantization. We also discuss the relation between the quantum wavefunctions and the classical space-time solutions and propose the wave function representing the ground state.Comment: 19 pages, 2 figures (uuencoded) included, plain Latex, needs amssymb.sty and psfig.sty, FTUV/93-34 & IFIC/93-3

    Solvable Models for radiating Black Holes and Area-preserving Diffeomorphisms

    Get PDF
    Solvable theories of 2D dilaton gravity can be obtained from a Liouville theory by suitable field redefinitions. In this paper we propose a new framework to generate 2D dilaton gravity models which can also be exactly solved in the semiclassical approximation. Our approach is based on the recently introduced scheme to quantize massless scalar fields coupled to 2D gravity maintaining invariance under area-preserving diffeomorphisms and Weyl transformations. Starting from the CGHS model with the new effective action we reestablish the full diffeomorphism invariance by means of an adequate family of field redefinitions. The original theory is therefore mapped into a large family of solvable models. We focus our analysis on the one-parameter class of models interpolating between the Russo-Susskind-Thorlacius model and the Bose-Parker-Peleg model. Finally we shall briefly indicate how can we extend our approach to spherically symmetric Einstein gravity coupled to 2D conformal matter.Comment: 10 pages, plain LaTeX, uses amssymb.st

    Free vacuum for loop quantum gravity

    Full text link
    We linearize extended ADM-gravity around the flat torus, and use the associated Fock vacuum to construct a state that could play the role of a free vacuum in loop quantum gravity. The state we obtain is an element of the gauge-invariant kinematic Hilbert space and restricted to a cutoff graph, as a natural consequence of the momentum cutoff of the original Fock state. It has the form of a Gaussian superposition of spin networks. We show that the peak of the Gaussian lies at weave-like states and derive a relation between the coloring of the weaves and the cutoff scale. Our analysis indicates that the peak weaves become independent of the cutoff length when the latter is much smaller than the Planck length. By the same method, we also construct multiple-graviton states. We discuss the possible use of these states for deriving a perturbation series in loop quantum gravity.Comment: 30 pages, 3 diagrams, treatment of phase factor adde

    Group field theory formulation of 3d quantum gravity coupled to matter fields

    Full text link
    We present a new group field theory describing 3d Riemannian quantum gravity coupled to matter fields for any choice of spin and mass. The perturbative expansion of the partition function produces fat graphs colored with SU(2) algebraic data, from which one can reconstruct at once a 3-dimensional simplicial complex representing spacetime and its geometry, like in the Ponzano-Regge formulation of pure 3d quantum gravity, and the Feynman graphs for the matter fields. The model then assigns quantum amplitudes to these fat graphs given by spin foam models for gravity coupled to interacting massive spinning point particles, whose properties we discuss.Comment: RevTeX; 28 pages, 21 figure

    Thermodynamics of Large AdS Black Holes

    Full text link
    We consider leading order quantum corrections to the geometry of large AdS black holes in a spherical reduction of four-dimensional Einstein gravity with negative cosmological constant. The Hawking temperature grows without bound with increasing black hole mass, yet the semiclassical back-reaction on the geometry is relatively mild, indicating that observers in free fall outside a large AdS black hole never see thermal radiation at the Hawking temperature. The positive specific heat of large AdS black holes is a statement about the dual gauge theory rather than an observable property on the gravity side. Implications for string thermodynamics with an AdS infrared regulator are briefly discussed.Comment: 17 pages, 1 figure, v2. added reference
    • …
    corecore