6 research outputs found

    Composite materials based on Ag nanoparticles in situ synthesized on the vaterite porous matrices

    No full text
    We have designed sensors based on Ag nanoparticles synthesized in situ on the vaterite beads. In this article we demonstrate an approach to produce size controllable spherical and elliptical vaterite particles and discuss time-dependent in situ Ag nanoparticles synthesis and its potential effect on surface-enhanced Raman scattering. The time dependent silver reduction synthesis in inorganic porous particles allows to regulate the number and size of Ag nanoparticles. It is shown that the irregular surface and high porosity of vaterite particles and large amount (surface filling factor) of the Ag nanoparticles are the critical parameters to increase the SERS signal to 104 times. Such inorganic composites have a huge potential in medical applications; soon they provide an opportunity to study intracellular processes in vivo. The detailed characterization of the microstructure of these composites was studied by scanning and transmission electron microscopy, including 3D visualization and energy dispersive x-ray microanalysis

    The Performance of Nonwoven PLLA Scaffolds of Different Thickness for Stem Cells Seeding and Implantation

    No full text
    The 3D reconstruction of 100 μm- and 600 μm-thick fibrous poly-L/L-lactide scaffolds was performed by confocal laser scanning microscopy and supported by scanning electron microscopy and showed that the density of the fibers on the side adjacent to the electrode is higher, which can affect cell diffusion, while the pore size is generally the same. Bone marrow mesenchymal stem cells cultured in a 600 μm-thick scaffold formed colonies and produced conditions for cell differentiation. An in vitro study of stem cells after 7 days revealed that cell proliferation and hepatocyte growth factor release in the 600 μm-thick scaffold were higher than in the 100 μm-thick scaffold. An in vivo study of scaffolds with and without stem cells implanted subcutaneously onto the backs of recipient mice was carried out to test their biodegradation and biocompatibility over a 0–3-week period. The cells seeded onto the 600 μm-thick scaffold promoted significant neovascularization in vivo. After 3 weeks, a significant number of donor cells persisted only on the inside of the 600 μm-thick scaffold. Thus, the use of bulkier matrices allows to prolong the effect of secretion of growth factors by stem cells during implantation. These 600 μm-thick scaffolds could potentially be utilized to repair and regenerate injuries with stem cell co-culture for vascularization of implant
    corecore