132 research outputs found
Parametric Resonance in Oscillations of Atmospheric Neutrinos?
We consider a solution of the atmospheric neutrino problem based on
oscillations of muon neutrinos to sterile neutrinos:
. The zenith angle () dependences of the
neutrino and upward-going muon fluxes in presence of these oscillations are
studied. The dependences have characteristic form with two dips: at and . The latter dip is
due to parametric resonance in oscillations of neutrinos which cross the core
of the earth. A comparison of predictions with data from the MACRO, Baksan and
Super-Kamiokande experiments is given.Comment: 14 pages + 9 eps figures in 6 pages, Latex fil
Solar Neutrinos with Three Flavor Mixings
The recent 71Ga solar neutrino observation is combined with the 37Cl and
Kamiokande-II observations in an analysis for neutrino masses and mixings. The
allowed parameter region is found for matter enhanced mixings among all three
neutrino flavors. Distortions of the solar neutrino spectrum unique to three
flavors are possible and may be observed in continuing and next generation
experiments.Comment: August 1992 (Revised) PURD-TH-92-
Exact and Approximate Formulas for Neutrino Mixing and Oscillations with Non-Standard Interactions
We present, both exactly and approximately, a complete set of mappings
between the vacuum (or fundamental) leptonic mixing parameters and the
effective ones in matter with non-standard neutrino interaction (NSI) effects
included. Within the three-flavor neutrino framework and a constant matter
density profile, a full set of sum rules is established, which enables us to
reconstruct the moduli of the effective leptonic mixing matrix elements, in
terms of the vacuum mixing parameters in order to reproduce the neutrino
oscillation probabilities for future long-baseline experiments. Very compact,
but quite accurate, approximate mappings are obtained based on series
expansions in the neutrino mass hierarchy parameter \eta \equiv \Delta
m^2_{21}/\Delta m^2_{31}, the vacuum leptonic mixing parameter s_{13} \equiv
\sin\theta_{13}, and the NSI parameters \epsilon_{\alpha\beta}. A detailed
numerical analysis about how the NSIs affect the smallest leptonic mixing angle
\theta_{13}, the deviation of the leptonic mixing angle \theta_{23} from its
maximal mixing value, and the transition probabilities useful for future
experiments are performed using our analytical results.Comment: 29 pages, 8 figures, final version published in J. High Energy Phy
Vacuum oscillations of solar neutrinos: correlation between spectrum distortion and seasonal variations
Long length vacuum oscillations solution of the solar neutrino problem is
discussed. We show that there is a strict correlation between a distortion of
the neutrino energy spectrum and an amplitude of seasonal variations of the
neutrino flux. The slope parameter which characterizes a distortion of the
recoil electron energy spectrum in the Super-Kamiokande experiment and the
seasonal asymmetry of the signal have been calculated in a wide range of
oscillation parameters. The correlation of the slope and asymmetry gives
crucial criteria for identification or exclusion of this solution. For the
positive slope indicated by preliminary Super-Kamiokande data we predict (40 -
60) % enhancement of the seasonal variations.Comment: 11 pages, 4 eps figures, LaTeX, analytical study and some
explanations added, updated experimental results use
Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos
Under the assumption that the density variation of the electrons can be
approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein
effect is treated for three generations of neutrinos. The generalized
hypergeometric functions that result from the exact solution of this problem
are studied in detail, and a method for their numerical evaluation is
presented. This analysis plays a central role in the determination of neutrino
masses, not only the differences of their squares, under the assumption of
universal quark-lepton mixing.Comment: 22 pages, LaTeX, including 2 figure
Homestake result, sterile neutrinos and low energy solar neutrino experiments
The Homestake result is about ~ 2 \sigma lower than the Ar-production rate,
Q_{Ar}, predicted by the LMA MSW solution of the solar neutrino problem. Also
there is no apparent upturn of the energy spectrum (R \equiv N_{obs}/N_{SSM})
at low energies in SNO and Super-Kamiokande. Both these facts can be explained
if a light, \Delta m^2_{01} ~ (0.2 - 2) \cdot 10^{-5} eV^2, sterile neutrino
exists which mixes very weakly with active neutrinos: \sin^2 2\alpha ~ (10^{-5}
- 10^{-3}). We perform both the analytical and numerical study of the
conversion effects in the system of two active neutrinos with the LMA
parameters and one weakly mixed sterile neutrino. The presence of sterile
neutrino leads to a dip in the survival probability in the intermediate energy
range E = (0.5 - 5) MeV thus suppressing the Be, or/and pep, CNO as well as B
electron neutrino fluxes. Apart from diminishing Q_{Ar} it leads to decrease of
the Ge-production rate and may lead to decrease of the BOREXINO signal and
CC/NC ratio at SNO. Future studies of the solar neutrinos by SNO, SK, BOREXINO
and KamLAND as well as by the new low energy experiments will allow us to check
this possibility. We present a general analysis of modifications of the LMA
energy profile due to mixing with new neutrino states.Comment: Figures 5 and 6 modified, shorter version will be published in PR
Solar Neutrinos: What We Have Learned
The four operating solar neutrino experiments confirm the hypothesis that the
energy source for solar luminosity is hydrogen fusion. However, the measured
rate for each of the four solar neutrino experiments differs significantly (by
factors of 2.0 to 3.5) from the corresponding theoretical prediction that is
based upon the standard solar model and the simplest version of the standard
electroweak theory. If standard electroweak theory is correct, the energy
spectrum for \b8 neutrinos created in the solar interior must be the same (to
one part in ) as the known laboratory \b8 neutrino energy spectrum.
Direct comparison of the chlorine and the Kamiokande experiments, both
sensitive to \b8 neutrinos, suggests that the discrepancy between theory and
observations depends upon neutrino energy, in conflict with standard
expectations. Monte Carlo studies with 1000 implementations of the standard
solar model confirm that the chlorine and the Kamiokande experiments cannot be
reconciled unless new weak interaction physics changes the shape of the \b8
neutrino energy spectrum. The results of the two gallium solar neutrino
experiments strengthen the conclusion that new physics is required and help
determine a relatively small allowed region for the MSW neutrino parameters.Comment: LaTeX file, 19 pages. For hardcopy with figures contact
[email protected]. Institute for Advanced Study number AST 93/6
Classical Nambu-Goldstone fields
It is shown that a Nambu-Goldstone (NG) field may be coherently produced by a
large number of particles in spite of the fact that the NG bosons do not couple
to flavor conserving scalar densities like . If a flavor
oscillation process takes place the phases of the pseudo-scalar or flavor
violating densities of different particles do not necessarily cancel each
other. The NG boson gets a macroscopic source whenever the total (spontaneously
broken) quantum number carried by the source particles suffers a net increase
or decrease in time. If the lepton numbers are spontaneously broken such
classical NG (majoron) fields may significantly change the neutrino oscillation
processes in stars pushing the observational capabilities of neutrino-majoron
couplings down to GeV.Comment: 11 pages, updated, to appear in PR
On the Size of the Dark Side of the Solar Neutrino Parameter Space
We present an analysis of the MSW neutrino oscillation solutions of the solar
neutrino problem in the framework of two-neutrino mixing in the enlarged
parameter space with . Recently, it was pointed out that the allowed region of
parameters from a fit to the measured total rates can extend to values (the so called ``dark side'') when higher confidence levels
are allowed. The purpose of this letter is to reanalize the problem including
all the solar neutrino data available, to discuss the dependence on the
statistical criteria in the determination of the CL of the ``dark side'' and to
extract the corresponding limits on the largest mixing allowed by the data. Our
results show that when the Super-Kamiokande data on the zenith angle
distribution of events and the spectrum information is included, the regions
extend more into the dark side.Comment: 5 pages,latex file using RevTex. Two-layer aproximation for the Earth
density replaced by numerical integration with PREM. Latest parametrization
of the sun matter density (BP2000) is included. Misprints corrected.
Conclusions unchanged. 5 postscript figures (bitmapped for compression). A
full version of the paper can be found at http://ific.uv.es/~penya/papers/ To
appear in Phys. Rev.
Neutrinos with Mixing in Twisting Magnetic Fields
Transitions in a system of neutrinos with vacuum mixing and magnetic moments,
propagating in matter and transverse magnetic field, are considered. It is
shown that in the realistic case of magnetic field direction varying along the
neutrino path qualitatively new phenomena become possible: permutation of
neutrino conversion resonances, appearance of resonances in the
neutrino-antineutrino () transition
channels, neutrino-antineutrino resonant conversion, large amplitude
oscillations, merging of different
resonances (triple resonances). Possible phenomenological implications of these
effects are briefly discussed.Comment: LaTeX, 35 pages, 4 figures (not included but available upon request).
In memoriam of Ya.A. Smorodinsky. SISSA-170/92/E
- âŠ