9 research outputs found

    Figure 9 from: Syromyatnikov MY, Golub VB, Kokina AV, Soboleva VA, Popov VN (2017) DNA barcoding and morphological analysis for rapid identification of most economically important crop-infesting Sunn pests belonging to Eurygaster Laporte, 1833 (Hemiptera, Scutelleridae). ZooKeys 706: 51-71. https://doi.org/10.3897/zookeys.706.13888

    Get PDF
    The genus Eurygaster Laporte, 1833 includes ten species five of which inhabit the European part of Russia. The harmful species of the genus is E. integriceps. Eurygaster species identification based on the morphological traits is very difficult, while that of the species at the egg or larval stages is extremely difficult or impossible. Eurygaster integriceps, E. maura, and E. testudinaria differ only slightly between each other morphologically, E. maura and E. testudinaria being almost indiscernible. DNA barcoding based on COI sequences have shown that E. integriceps differs significantly from these closely related species, which enables its rapid and accurate identification. Based on COI nucleotide sequences, three species of Sunn pests, E. maura, E. testudinarius, E. dilaticollis, could not be differentiated from each other through DNA barcoding. The difference in the DNA sequences between the COI gene of E. integriceps and COI genes of E. maura and E. testudinarius was more than 4%. In the present study DNA barcoding of two Eurygaster species was performed for the first time on E. integriceps, the most dangerous pest in the genus, and E. dilaticollis that only inhabits natural ecosystems. The PCR-RFLP method was developed in this work for the rapid identification of E. integriceps

    The Effect of Pesticides on the Microbiome of Animals

    No full text
    In recent decades an increase in the use of pesticides to protect plants from pests, diseases and weeds has been observed. There are many studies on the effects of various pesticides on non-target organisms. This review aims to analyze and summarize published scientific data on the effects of pesticides on the animal microbiome. Pesticides can affect various parameters of the animal microbiome, such as the taxonomic composition of bacteria, bacterial biodiversity, and bacterial ratios and modify the microbiome of various organisms from insects to mammals. Pesticide induced changes in the microbiome reducing the animal’s immunity. The negative effects of pesticides could pose a global problem for pollinators. Another possible negative effect of pesticides is the impact of pesticides on the intestinal microbiota of bumblebees and bees that increase the body’s sensitivity to pathogenic microflora, which leads to the death of insects. In addition, pesticides can affect vitality, mating success and characteristics of offspring. The review considers methods for correcting of bee microbiome

    Microbiota of Cow’s Milk with Udder Pathologies

    No full text
    Mastitis is the most common disease for cattle, causing great economic losses for the global dairy industry. Recent studies indicate the multi-agent and microbiome diversity of this disease. To understand the nature of mastitis and investigate the role of the microbiome in the development of pathologies in the udder of bovines, we performed NGS sequencing of the 16S rRNA gene of cow’s milk with pathologies of the udder. The obtained data show a significant increase in the Cutibacterium, Blautia, Clostridium sensu stricto 2, Staphylococcus, Streptococcus and Microbacterium genera for groups of cows with udder pathologies. Increasing relative abundance of the Staphylococcus and Streptococcus genera was associated with subclinical mastitis. Our data show that a relative increase in abundance of the Staphylococcus and Microbacterium genera may be an early sign of infection. We have shown, for the first time, an increase in the Colidextribacter, Paeniclostridium and Turicibacter genera in groups of cows with mastitis. These results expand our understanding of the role of the microbiome in the development of bovine mastitis
    corecore