400 research outputs found

    Psychosocial and contextual correlates of opioid overdose risk among drug users in St. Petersburg, Russia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Opioid overdose in Russia is a problem that has grown more severe as heroin abuse expanded over the past decade, yet few studies have explored it in detail. In order to gain a clearer understanding of the situation, 60 drug users, both in and out of drug treatment in St. Petersburg, were interviewed concerning their overdose experience and knowledge about overdose recognition and prevention.</p> <p>Methods</p> <p>Using a semi-structured interview, we sought to identify and describe local attitudes, knowledge and experience (both self-sustained and witnessed) of opioid overdose. Bi-variate and multiple logistic regressions were performed in order to identify the relationship between overdose experience and sociodemographic factors, risk behaviors, and clinical psychiatric measures.</p> <p>Results</p> <p>We found that having experienced or witnessed an opioid overdose within the previous year was common, overdose knowledge was generally high, but nearly half the participants reported low self-efficacy for effectively intervening in an overdose situation. In bivariate analyses, self-reported family problems (i.e., perceived problematic family interactions) were positively associated with both experiencing (t<sub>56 </sub>= 2.49; p < 0.05) and with witnessing a greater number of overdoses in the previous year (rho<sub>s </sub>= 0.31; p < 0.05). Having previously overdosed [Adjusted Risk Ratio (ARR) 1.7, 95% Confidence Interval (CI) 1.1–2.6] and higher SCL-90-R somatization scores (ARR 1.2, 95% CI 0.96 – 1.5) were independently associated in multivariable analyses with self-sustained overdose experience in the past year. Greater perceived likelihood of experiencing a future overdose and concern about medical problems were independently associated with witnessing a higher number of overdoses within the previous year. Over two thirds of the participants expressed interest in receiving training in overdose prevention and response.</p> <p>Conclusion</p> <p>Opioid overdose experience is very common among drug users in St. Petersburg, Russia, and interest in receiving training for overdose recognition and prevention was high. Future research should target the development of effective overdose recognition and prevention interventions, especially ones that include naloxone distribution and involve drug users' families.</p

    Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application

    Get PDF
    Ultrathin (thicknessnm) electrically conducting membranes can be used as electrodes for sensors, actuators, optical devices, fuel cells, scaffolds for assembling nanoparticles, and separation of biological macromolecules.1-6 Various approaches have been suggested for the fabrication of free-standing nanomembranes based on organic polymers and/or inorganic materials: spin-casting of films,7 layer-by-layer assembly of polyelectrolyte multilayers,8 cross-linking of self-assembled monolayers,9 and assembly of triblock copolymers.10,11 Loading materials such as gold nanoparticles12 or carbon nanotubes13 make membranes robust and electrically conductive. However, these methods are often time-consuming and have some limitations in terms of achievable electrical and electrochemical membrane performance as well as scale-up. Alternative approaches are needed for the preparation of mechanically robust, free-standing, conductive nanomembranes that could be easily manufactured

    Patient-specific RF safety assessment in MRI: Progress in creating surface-based human head and shoulder models

    No full text
    The interaction of electromagnetic (EM) fields with the human body during magnetic resonance imaging (MRI) is complex and subject specific. MRI radiofrequency (RF) coil performance and safety assessment typically includes numerical EM simulations with a set of human body models. The dimensions of mesh elements used for discretization of the EM simulation domain must be adequate for correct representation of the MRI coil elements, different types of human tissue, and wires and electrodes of additional devices. Examples of such devices include those used during electroencephalography, transcranial magnetic stimulation, and transcranial direct current stimulation, which record complementary information or manipulate brain states during MRI measurement. The electrical contact within and between tissues, as well as between an electrode and the skin, must also be preserved. These requirements can be fulfilled with anatomically correct surface-based human models and EM solvers based on unstructured meshes. Here, we report (i) our workflow used to generate the surface meshes of a head and torso model from the segmented AustinMan dataset, (ii) head and torso model mesh optimization for three-dimensional EM simulation in ANSYS HFSS, and (iii) several case studies of MRI RF coil performance and safety assessment

    High - Temperature Superconductivity in Iron Based Layered Compounds

    Full text link
    We present a review of basic experimental facts on the new class of high - temperature superconductors - iron based layered compounds like REOFeAs (RE=La,Ce,Nd,Pr,Sm...), AFe_2As_2 (A=Ba,Sr...), AFeAs (A=Li,...) and FeSe(Te). We discuss electronic structure, including the role of correlations, spectrum and role of collective excitations (phonons, spin waves), as well as the main models, describing possible types of magnetic ordering and Cooper pairing in these compounds.Comment: 43 pages, 30 figures, review talk on 90th anniversary of Physics Uspekh

    Climate shapes the spatiotemporal variation in color morph diversity and composition across the distribution range of Chrysomela lapponica leaf beetle

    Get PDF
    Color polymorphism offers rich opportunities for studying the eco-evolutionary mechanisms that drive the adaptations of local populations to heterogeneous and changing environments. We explored the color morph diversity and composition in a Chrysomela lapponica leaf beetle across its entire distribution range to test the hypothesis that environmental and climatic variables shape spatiotemporal variation in the phenotypic structure of a polymorphic species. We obtained information on 13 617 specimens of this beetle from museums, private collections, and websites. These specimens (collected from 1830-2020) originated from 959 localities spanning 33 degrees latitude, 178 degrees longitude, and 4200 m altitude. We classified the beetles into five color morphs and searched for environmental factors that could explain the variation in the level of polymorphism (quantified by the Shannon diversity index) and in the relative frequencies of individual color morphs. The highest level of polymorphism was found at high latitudes and altitudes. The color morphs differed in their climatic requirements; composition of colour morphs was independent of the geographic distance that separated populations but changed with collection year, longitude, mean July temperature and between-year temperature fluctuations. The proportion of melanic beetles, in line with the thermal melanism hypothesis, increased with increasing latitude and altitude and decreased with increasing climate seasonality. Melanic morph frequencies also declined during the past century, but only at high latitudes and altitudes where recent climate warming was especially strong. The observed patterns suggest that color polymorphism is especially advantageous for populations inhabiting unpredictable environments, presumably due to the different climatic requirements of coexisting color morphs

    Climate shapes the spatiotemporal variation in color morph diversity and composition across the distribution range of Chrysomela lapponica leaf beetle

    Get PDF
    Color polymorphism offers rich opportunities for studying the eco-evolutionary mechanisms that drive the adaptations of local populations to heterogeneous and changing environments. We explored the color morph diversity and composition in a Chrysomela lapponica leaf beetle across its entire distribution range to test the hypothesis that environmental and climatic variables shape spatiotemporal variation in the phenotypic structure of a polymorphic species. We obtained information on 13 617 specimens of this beetle from museums, private collections, and websites. These specimens (collected from 1830-2020) originated from 959 localities spanning 33 degrees latitude, 178 degrees longitude, and 4200 m altitude. We classified the beetles into five color morphs and searched for environmental factors that could explain the variation in the level of polymorphism (quantified by the Shannon diversity index) and in the relative frequencies of individual color morphs. The highest level of polymorphism was found at high latitudes and altitudes. The color morphs differed in their climatic requirements; composition of colour morphs was independent of the geographic distance that separated populations but changed with collection year, longitude, mean July temperature and between-year temperature fluctuations. The proportion of melanic beetles, in line with the thermal melanism hypothesis, increased with increasing latitude and altitude and decreased with increasing climate seasonality. Melanic morph frequencies also declined during the past century, but only at high latitudes and altitudes where recent climate warming was especially strong. The observed patterns suggest that color polymorphism is especially advantageous for populations inhabiting unpredictable environments, presumably due to the different climatic requirements of coexisting color morphs

    New Nanostructured Carbon Coating Inhibits Bacterial Growth, but Does Not Influence on Animal Cells

    Get PDF
    An electrospark technology has been developed for obtaining a colloidal solution containing nanosized amorphous carbon. The advantages of the technology are its low cost and high performance. The colloidal solution of nanosized carbon is highly stable. The coatings on its basis are nanostructured. They are characterized by high adhesion and hydrophobicity. It was found that the propagation of microorganisms on nanosized carbon coatings is significantly hindered. At the same time, eukaryotic animal cells grow and develop on nanosized carbon coatings, as well as on the nitinol medical alloy. The use of a colloidal solution as available, cheap and non-toxic nanomaterial for the creation of antibacterial coatings to prevent biofilm formation seems to be very promising for modern medicine, pharmaceutical and food industries

    The 6^{6}H states studied in the d(8He,α)d(^8\text{He},\alpha) reaction and evidence of extremely correlated character of the 5^{5}H ground state

    Full text link
    The extremely neutron-rich system 6^{6}H was studied in the direct 2H(8He,4He)6^2\text{H}(^8\text{He},{^4\text{He}})^{6}H transfer reaction with a 26 AA MeV secondary 8^{8}He beam. The measured missing mass spectrum shows a resonant state in 6^{6}H at 6.8(3)6.8(3) MeV relative to the 3^3H+3n3n threshold. The population cross section of the presumably pp-wave states in the energy range from 4 to 8 MeV is dσ/dΩc.m.190(40)d\sigma/d\Omega_{\text{c.m.}} \simeq 190(40) μ\mub/sr in the angular range 5<θc.m.<165^{\circ}<\theta_{\text{c.m.}}<16^{\circ}. The obtained missing mass spectrum is free of the 6^{6}H events below 3.5 MeV (dσ/dΩc.m.3d\sigma/d\Omega_{\text{c.m.}} \lesssim 3 μ\mub/sr in the same angular range). The steep rise of the 6^{6}H missing mass spectrum at 3 MeV allows to show that 4.5(3)4.5(3) MeV is the lower limit for the possible resonant state energy in 6^{6}H tolerated by our data. According to paring energy estimates, such a 4.5(3)4.5(3) MeV resonance is a realistic candidate for the 6^{6}H ground state (g.s.). The obtained results confirm that the decay mechanism of the 7^{7}H g.s.\ (located at 2.2 MeV above the 3^{3}H+4n4n threshold) is the ``true'' (or simultaneous) 4n4n emission. The resonance energy profiles and the momentum distributions of the sequential 6^{6}H \,\rightarrow \, ^5H(g.s.)+n\, \rightarrow \, ^3H+3n3n decay fragments were analyzed by the theoretically-updated direct four-body-decay and sequential-emission mechanisms. The measured momentum distributions of the 3^{3}H fragments in the 6^{6}H rest frame indicate very strong ``dineutron-type'' correlations in the 5^{5}H ground state decay.Comment: 9 pages, 11 figure

    Women's preferences for men's facial masculinity are strongest under favorable ecological conditions

    Get PDF
    The strength of sexual selection on secondary sexual traits varies depending on prevailing economic and ecological conditions. In humans, cross-cultural evidence suggests women's preferences for men's testosterone dependent masculine facial traits are stronger under conditions where health is compromised, male mortality rates are higher and economic development is higher. Here we use a sample of 4483 exclusively heterosexual women from 34 countries and employ mixed effects modelling to test how social, ecological and economic variables predict women's facial masculinity preferences. We report women's preferences for more masculine looking men are stronger in countries with higher sociosexuality and where national health indices and human development indices are higher, while no associations were found between preferences and indices of intra-sexual competition. Our results show that women's preferences for masculine faces are stronger under conditions where offspring survival is higher and economic conditions are more favorable
    corecore