32 research outputs found

    3-D Echocardiography Is Feasible and More Reproducible than 2-D Echocardiography for In-Training Echocardiographers in Follow-up of Patients with Heart Failure with Reduced Ejection Fraction

    Get PDF
    Left ventricular volumes (LVVs) and ejection fraction (LVEF) are key elements in the evaluation and follow-up of patients with heart failure with reduced ejection fraction (HFrEF). Therefore, a feasible and reproducible imaging method to be used by both experienced and in-training echocardiographers is mandatory. Our aim was to establish if, in a large echo lab, echocardiographers in-training provide feasible and more reproducible results for the evaluation of patients with HFrEF when using 3-dimensional echocardiography (3-DE) versus 2-dimensional echocardiography (2-DE). Sixty patients with HFrEF (46 males, age: 58 ± 17 y) underwent standard transthoracic 2-D acquisitions and 3-D multibeat full volumes of the left ventricle. One expert user in echocardiography (expert) and three echocardiographers with different levels of training in 2-DE (beginner, medium and advanced) measured the 2-D LVVs and LVEFs on the same consecutive images of patients with HFrEF. Afterward, the expert performed a 1-mo training in 3-DE analysis of the users, and both the expert and trainees measured the 3-D LVVs and LVEF of the same patients. Measurements provided by the expert and all trainees in echo were compared. Six patients were excluded from the study because of poor image quality. The mean end-diastolic LVV of the remaining 54 patients was 214 ± 75 mL with 2-DE and 233 ± 77 mL with 3-DE. Mean LVEF was 35 ± 10% with 2-DE and 33 ± 10% with 3-DE. Our analysis revealed that, compared with the expert user, the trainees had acceptable reproducibility for the 2-DE measurements, according to their level of expertise in 2-DE (intra-class coefficients [ICCs] ranging from 0.75 to 0.94). However, after the short training in 3-DE, they provided feasible and more reproducible measurements of the 3-D LVVs and LVEF (ICCs ranging from 0.89-0.97) than they had with 2-DE. 3-DE is a feasible, rapidly learned and more reproducible method for the assessment of LVVs and LVEF than 2-DE, regardless of the basic level of expertise in 2-DE of the trainees in echocardiography. In echo labs with a wide range of staff experience, 3-DE might be a more accurate method for the follow-up of patients with HFrEF

    Multicentric Atrial Strain COmparison between Two Different Modalities: MASCOT HIT Study

    Get PDF
    Two methods are currently available for left atrial (LA) strain measurement by speckle tracking echocardiography, with two different reference timings for starting the analysis: QRS (QRS-LASr) and P wave (P-LASr). The aim of MASCOT HIT study was to define which of the two was more reproducible, more feasible, and less time consuming. In 26 expert centers, LA strain was analyzed by two different echocardiographers (young vs senior) in a blinded fashion. The study population included: healthy subjects, patients with arterial hypertension or aortic stenosis (LA pressure overload, group 2) and patients with mitral regurgitation or heart failure (LA volume–pressure overload, group 3). Difference between the inter-correlation coefficient (ICC) by the two echocardiographers using the two techniques, feasibility and analysis time of both methods were analyzed. A total of 938 subjects were included: 309 controls, 333 patients in group 2, and 296 patients in group 3. The ICC was comparable between QRS-LASr (0.93) and P-LASr (0.90). The young echocardiographers calculated QRS-LASr in 90% of cases, the expert ones in 95%. The feasibility of P-LASr was 85% by young echocardiographers and 88% by senior ones. QRS-LASr young median time was 110 s (interquartile range, IR, 78-149) vs senior 110 s (IR 78-155); for P-LASr, 120 s (IR 80-165) and 120 s (IR 90-161), respectively. LA strain was feasible in the majority of patients with similar reproducibility for both methods. QRS complex guaranteed a slightly higher feasibility and a lower time wasting compared to the use of P wave as the reference

    Cardiovascular Toxicity Induced by Vascular Endothelial Growth Factor Inhibitors

    No full text
    Cardiotoxicity is an important side effect of vascular endothelial growth factor (VEGF) inhibitors therapy used in the treatment of various malignancies, leading to increased morbidity and mortality. Arterial hypertension, cardiac ischemia with the acceleration of atherosclerosis, arrhythmias, myocardial dysfunction and thromboembolic disease are the most feared cardiovascular adverse reactions due to VEGF inhibitors. Susceptibility for the occurrence of VEGF inhibitors-induced cardiotoxicity has multifactorial determinants, with a significant inter-individual variation. Baseline cardiovascular risk assessment of the patient, type and stage of cancer, dose and duration of VEGF inhibitors treatment and adjuvant chemotherapy or radiotherapy are the main predictors for cardiotoxicity. The role of the cardio-oncology team becomes essential for achieving maximum therapeutic anti-angiogenic effects with minimum cardiovascular side effects. This review will summarize the incidence, risk factors, mechanisms, management and treatment of VEGF inhibitors-induced cardiovascular toxicity

    Cardiovascular Toxicity Induced by Vascular Endothelial Growth Factor Inhibitors

    No full text
    Cardiotoxicity is an important side effect of vascular endothelial growth factor (VEGF) inhibitors therapy used in the treatment of various malignancies, leading to increased morbidity and mortality. Arterial hypertension, cardiac ischemia with the acceleration of atherosclerosis, arrhythmias, myocardial dysfunction and thromboembolic disease are the most feared cardiovascular adverse reactions due to VEGF inhibitors. Susceptibility for the occurrence of VEGF inhibitors-induced cardiotoxicity has multifactorial determinants, with a significant inter-individual variation. Baseline cardiovascular risk assessment of the patient, type and stage of cancer, dose and duration of VEGF inhibitors treatment and adjuvant chemotherapy or radiotherapy are the main predictors for cardiotoxicity. The role of the cardio-oncology team becomes essential for achieving maximum therapeutic anti-angiogenic effects with minimum cardiovascular side effects. This review will summarize the incidence, risk factors, mechanisms, management and treatment of VEGF inhibitors-induced cardiovascular toxicity
    corecore