166 research outputs found

    MYOD1 involvement in myopathy

    Get PDF
    [Excerpt] Introduction Myogenic Differentiation 1 (MYOD1) encodes a transcription factor that plays an important role in myogenic determination into mature skeletal muscle [1]. The first loss-of-function mutation of MYOD1 in humans was described in three siblings with perinatal lethal fetal akinesia [2].[...]We thank the individual and family. Funding was provided by The Fonds de recherche du Québec - Santé (FRQS) and Canadian Institutes of Health Research (CIHR) to P.M.C., Fundação para a Ciência e Tecnologia (FCT) with the fellowship SFRH/BD/84650/2010 to F.L. and Groupe Pasteur Mutualité Foundation (GPM Foundation) to M.M.info:eu-repo/semantics/publishedVersio

    Preemptively Guessing the Center

    Get PDF

    Delayed meal timing after exercise is associated with reduced appetite and energy intake in adolescents with obesity

    Get PDF
    Background While the beneficial effects of exercise on appetite might depend on its timing during the day or relative to a meal, this remains poorly explored in youth. Objectives To examine the importance of meal timing (+30 vs +90 minutes) after performing exercise on energy intake, appetite and food reward in adolescents with obesity. Methods Eighteen adolescents with obesity randomly completed three conditions: (a) lunch (12:00 pm) set 30 minutes after a rest session (11:00 am); (b) lunch (12:00 pm) set 30 minutes after an exercise session (11:00 am)(MEAL‐30); (c) lunch (01:00 pm) set 90 minutes after an exercise session (11:00 am)(MEAL‐90). Lunch and dinner ad libitum energy intake was assessed, food reward (LFPQ) assessed before and after lunch, and before dinner, appetite sensations were assessed at regular intervals. Results Energy intake was lower at MEAL‐90 than MEAL‐30 and CON at lunch (P < .05 and P < .01, respectively) and lunch + dinner combined (P < .001). A decrease in intake (g) of protein, fat and carbohydrate was observed. Post‐exercise hunger was lower on MEAL‐90 compared with CON. No condition effects were found at lunch for food reward. Conclusions Delaying the timing of the meal after exercise might help affect energy balance by decreasing ad libitum energy intake without increasing hunger and by improving satiety in adolescents with obesity

    Does exercising before or after a meal affect energy balance in adolescents with obesity?

    Get PDF
    Background and aim Exercise timing has been suggested to affect appetite and energy intake (EI). The aim of this study was to examine the impact of exercising immediately before or after a meal on EI, appetite sensations and food reward (FR) in adolescents with obesity. Methods and results Seventeen adolescents with obesity completed 3 experimental sessions (randomized controlled trial): rest + lunch (CON); exercise + lunch (EX-MEAL); lunch + exercise (MEAL-EX). The exercise consisted of cycling 30 min at 65%V̇O2peak. Outcomes included ad libitum EI (weighed lunch and dinner), FR (Leeds Food Preference Questionnaire at pre- and post-combination of exercise/rest and lunch, and pre-dinner) and appetite sensations (visual analogue scales). EI was not different between conditions. Compared with CON, relative EI at lunch was lower in EX-MEAL and MEAL-EX (p ≤ 0.05) and daily only in MEAL-EX (p < 0.01). Postprandial fullness was higher in EX-MEAL compared to CON. Compared with CON, both EX-MEAL and MEAL-EX attenuated the increase in wanting for sweet food and reduced explicit liking for fat. Conclusions These preliminary results suggest that exercising immediately before or after a meal produce few differences in appetite and have small beneficial effects on overall energy balance in adolescents with obesity, as well as on FR. Clinical trials NCT03967782

    Shape: automatic conformation prediction of carbohydrates using a genetic algorithm

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detailed experimental three dimensional structures of carbohydrates are often difficult to acquire. Molecular modelling and computational conformation prediction are therefore commonly used tools for three dimensional structure studies. Modelling procedures generally require significant training and computing resources, which is often impractical for most experimental chemists and biologists. <monospace>Shape</monospace> has been developed to improve the availability of modelling in this field.</p> <p>Results</p> <p>The <monospace>Shape</monospace> software package has been developed for simplicity of use and conformation prediction performance. A trivial user interface coupled to an efficient genetic algorithm conformation search makes it a powerful tool for automated modelling. Carbohydrates up to a few hundred atoms in size can be investigated on common computer hardware. It has been shown to perform well for the prediction of over four hundred bioactive oligosaccharides, as well as compare favourably with previously published studies on carbohydrate conformation prediction.</p> <p>Conclusion</p> <p>The <monospace>Shape</monospace> fully automated conformation prediction can be used by scientists who lack significant modelling training, and performs well on computing hardware such as laptops and desktops. It can also be deployed on computer clusters for increased capacity. The prediction accuracy under the default settings is good, as it agrees well with experimental data and previously published conformation prediction studies. This software is available both as open source and under commercial licenses.</p

    New Noncovalent Inhibitors of Penicillin-Binding Proteins from Penicillin-Resistant Bacteria

    Get PDF
    BACKGROUND: Penicillin-binding proteins (PBPs) are well known and validated targets for antibacterial therapy. The most important clinically used inhibitors of PBPs beta-lactams inhibit transpeptidase activity of PBPs by forming a covalent penicilloyl-enzyme complex that blocks the normal transpeptidation reaction; this finally results in bacterial death. In some resistant bacteria the resistance is acquired by active-site distortion of PBPs, which lowers their acylation efficiency for beta-lactams. To address this problem we focused our attention to discovery of novel noncovalent inhibitors of PBPs. METHODOLOGY/PRINCIPAL FINDINGS: Our in-house bank of compounds was screened for inhibition of three PBPs from resistant bacteria: PBP2a from Methicillin-resistant Staphylococcus aureus (MRSA), PBP2x from Streptococcus pneumoniae strain 5204, and PBP5fm from Enterococcus faecium strain D63r. Initial hit inhibitor obtained by screening was then used as a starting point for computational similarity searching for structurally related compounds and several new noncovalent inhibitors were discovered. Two compounds had promising inhibitory activities of both PBP2a and PBP2x 5204, and good in-vitro antibacterial activities against a panel of Gram-positive bacterial strains. CONCLUSIONS: We found new noncovalent inhibitors of PBPs which represent important starting points for development of more potent inhibitors of PBPs that can target penicillin-resistant bacteria.Eur-Intafa

    Insights into the Binding of Phenyltiocarbamide (PTC) Agonist to Its Target Human TAS2R38 Bitter Receptor

    Get PDF
    Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking. The predictions are validated by site-directed mutagenesis experiments that involve specific residues located in the putative binding site and trans-membrane (TM) helices 6 and 7 putatively involved in receptor activation. Based on our measurements, we suggest that (i) residue N103 participates actively in PTC binding, in line with previous computational studies. (ii) W99, M100 and S259 contribute to define the size and shape of the binding cavity. (iii) W99 and M100, along with F255 and V296, play a key role for receptor activation, providing insights on bitter taste receptor activation not emerging from the previously reported computational models

    The VICI-trial: high frequency oscillation versus conventional mechanical ventilation in newborns with congenital diaphragmatic hernia: an international multicentre randomized controlled trial

    Get PDF
    Background: Congenital diaphragmatic hernia (CDH) is a severe congenital anomaly of the diaphragm resulting in pulmonary hypoplasia and pulmonary hypertension. It is associated with a high risk of mortality and pulmonary morbidity. Previous retrospective studies have reported high frequency oscillatory ventilation (HFO) to reduce pulmonary morbidity in infants with CDH, while others indicated HFO to be associated with worse outcome. We therefore aimed to develop a randomized controlled trial to compare initial ventilatory treatment with high-frequency oscillation and conventional ventilation in infants with CDH.Methods/design: This trial is designed as a multicentre trial in which 400 infants (200 in each arm) will be included. Primary outcome measures are BPD, described as oxygen dependency by day 28 according to the definition of Jobe and Bancalari, and/or mortality by day 28. All liveborn infants with CDH born at a gestational age of over 34 weeks and no other severe congenital anomalies are eligible for inclusion. Parental informed consent is asked antenatally and the allocated ventilation mode starts within two hours after birth. Laboratory samples of blood, urine and tracheal aspirate are taken at the first day of life, day 3, day 7, day 14 and day 28 to evaluate laboratory markers for ventilator-induced lung injury and pulmonary hypertension.Discussion: To date, randomized clinical trials are lacking in the field of CDH. The VICI-trial, as the first randomized clinical trial in the field of CDH, may provide further insight in ventilation strategies in CDH patient. This may hopefully prevent mortality and morbidity.Trial registration: Netherlands Trial Register (NTR): NTR1310
    corecore