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Abstract. An online algorithm is typically unaware of the length of the
input request sequence that it is called upon. Consequently, it cannot
determine whether it has already processed most of its input or whether
the bulk of work is still ahead.
In this paper, we are interested in whether some sort of orientation within
the request sequence is nevertheless possible. Our objective is to preemp-
tively guess the center of a request sequence of unknown length n: While
processing the input, the online algorithm maintains a guess for the cen-
tral position n/2 and is only allowed to update its guess to the position
of the current element under investigation. We show that there is a ran-
domized algorithm that in expectation places the guess at a distance
of 0.172n from the central position n/2, and we prove that this is best
possible. We also give upper and lower bounds for a natural extension
to weighted sequences.
This problem has an application to preemptively partitioning integer
sequences and is connected to the online bidding problem.

1 Introduction

Online Algorithms. Online algorithms process their inputs item by item in a
linear fashion. They are characterized by the fact that the algorithm’s decision
as to how to process the current input item is irrevocable. A key difficulty in the
design of online algorithms is that they are typically unaware of the length of the
input request sequence3. Indeed, for many online problems (e.g. problems with
a rent or buy flavor such as the ski rental problem [2]), knowing the input length
would allow the algorithm to solve the problem optimally. Without knowing
the input length, online algorithms are unable to determine the position of the
current element within the request sequence.

? C. Konrad is supported by the Centre for Discrete Mathematics and its Applications
(DIMAP) at Warwick University and by EPSRC award EP/N011163/1. T. Tonoyan
is supported by grants no. 152679-05 and 174484-05 from the Icelandic Research
Fund.

3 An exception are online algorithms with advice, where the online algorithm receives
additional input bits prior to the processing of the request sequence. These bits can
be used to encode the input length. See [1] for a recent survey.



Guessing the Center. In this paper, we ask whether we can nevertheless obtain
some sort of orientation within the request sequence. We study the natural task
of guessing the central position n/2 within a request sequence of unknown length
n in an online fashion. In this problem, the online algorithm maintains a guess of
the central position while processing the input request sequence. The algorithm
is only allowed to update its guess to the position of the current element under
investigation. It may thus potentially update the guess many times, however,
each update bears the risk that the input sequence may end very soon and the
guess is thus far from the center. Such an algorithm follows the following scheme:

Algorithm 1 Scheme for Preemptively Guessing the Center

p← 0 {initialization of our guess}
for each request j = 1, 2, . . . , n do {n is unknown}

if TODO: add condition here then {update guess}
p← j

return p

We also study a generalization of this problem to weighted requests. This
is best modelled as follows. The online algorithm processes a sequence X =
w1, w2, . . . , wn of positive integers. Let W =

∑n
i=1 wi be the total weight of

the sequence. We assume that there exists an index m with 1 ≤ m ≤ n, such
that

∑m
i=1 wi =

∑n
i=m+1 wi, i.e., the sequence can be split into two parts of

equal weight. This assumption is necessary for a meaningful problem definition
as we will discuss in Section 4.1 in more detail. While processing X, an online
algorithm A maintains a guess p for the position m as in the unweighted case.
The objective is to minimize the weight between the guess p and the position m
of the central weight, that is, the deviation

∆X
A :=

max{p,m}∑
i=min{p,m}+1

wi ,

is to be minimized, where A refers to the employed algorithm and X is the
input sequence. Note that the unweighted version of this problem is obtained by
setting wi = 1, for every 1 ≤ i ≤ n. One property of this definition is that we
only consider unweighted sequences of even length, since sequences of odd lengths
cannot be split into two parts of equal weight. This is only for convenience; a
meaningful problem statement with similar results for unweighted sequences of
odd lengths can easily be derived from this work. For unweighted sequences we
write ∆n

A instead of ∆X
A , where n denotes the input length.

Results. For unweighted request sequences, we give an optimal randomized
preemptive online algorithm for guessing the center. Our algorithm has expected
deviation 0.172n from the central position n/2 (Theorem 1). Our main result is
a lower bound, which shows that this is best possible (Theorem 3). We further
give a barely random algorithm that uses only a single random bit and reports a
position with expected deviation 0.25n. This is also proved to be best possible for
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the class of algorithms that only use a single random bit. For weighted sequences,
we give a randomized preemptive online algorithm that reports a position with
expected deviation 0.313W , where W is the total weight of the input sequence
(Theorem 4). This is complemented by a lower bound of 0.25W (Theorem 5).
Closing this gap proves challenging and is left as an open problem.

Techniques. Both our algorithms for unweighted and weighted sequences em-
ploy the doubling method with a random seed. In the unweighted case, our
algorithm updates its guess to the current position j if j ∈ {dxiδe | i ∈ N} (this
condition is slightly different in the weighted case), where x > 2 is an optimized
parameter that determines the step size between the guesses (this parameter is
different for weighted and unweighted sequences), and δ ∈ (0, 1) is a seed that
is chosen uniformly at random. This technique is well known and has previously
been applied for various problems, see for example [3]. While our algorithms are
extremely simple, their analyses require careful case distinctions.

Our main result is a lower bound for unweighted sequences, which proves
that the doubling method is optimal. The argument relies on Yao’s Minimax
principle [4]. We define a hard input distribution where the probability of a
specific input length is inversely proportional to its length. We then argue that
a deterministic guessing algorithm, which can be identified by a sequence of
increasing positions at which it updates its guess, will in expectation (over the
hard input distribution) have a deviation of 0.172n from the central position.
By Yao’s Minimax principle, this implies that our algorithm for unweighted
sequences is best possible. This argument is the most technical contribution
of the paper. The lower bound for weighted sequences follows the same line,
however, it uses a sequence of exponentially increasing weights.

Further Related Work. Preemptively guessing the center is strongly related
to the online bidding problem [5]. In online bidding, the objective is to guess an
unknown target value. The algorithm submits increasing guesses until a guess
that is at least as large as the target value is submitted. For this problem, the
usual cost function is the sum of the submitted guesses, which is very differ-
ent from our cost function. However, similarly to the problem of guessing the
center, an optimal randomized strategy can be obtained by using a sequence of
exponentially increasing guesses.

Guessing the center is a special case of the problem of partitioning integer
sequences. In this problem, an integer array A of length n and an integer p ≥ 2
is given, and the goal is to find (p− 1) separator positions s1, s2, . . . , sp−1 with

1 = s0 ≤ s1 ≤ s2 ≤ · · · ≤ sp−1 ≤ sp = n+1 such that max{
∑sj+1−1
i=sj

Ai | 0 ≤ j <
p} is minimized. This load balancing task has a long history in the offline setting
(e.g. [6,7,8,9]) and has recently been studied in the context of data streams [10]
and online algorithms [11] by the authors of this paper. In the preemptive online
model, an algorithm is only allowed to insert a new partition separator at the
current position, and, once all separators have been placed, previously inserted
separators can be removed and then reinserted again. As shown in [11], a 2-
approximation algorithm for arbitrary values of p can be obtained. The special
case p = 2 boils down to determining the central position of an integer sequence
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using a preemptive guessing scheme. The problem studied in this paper thus
correspond to preemptively partitioning an integer sequence of length n into
two parts of equal weights.

Outline. We give our algorithm for unweighted sequences in Section 2 and our
lower bound for unweighted sequences in Section 3. In Section 4, we address ex-
tensions to weighted sequences. We conclude with an open problem in Section 5.
Due to space restrictions, we only sketch the proofs of Theorems 4 and 5 are
defer the full proofs to the complete version of this paper.

2 Algorithm For Guessing the Center

Our algorithm, denoted Ax, is parametrized by a real number x > 2. It employs a
well-known doubling technique with randomized seeding. We first pick a seed δ ∈
(0, 1) uniformly at random. The parameter x determines the distance between
two consecutive guesses and will be optimized later. The algorithm updates
our guess for the central position whenever we process requests dx1+δe, dx2+δe,
dx3+δe, . . . . This is depicted in Algorithm 2.

Algorithm 2 Algorithm Ax for guessing the center

Choose uniform random δ ∈ (0, 1), i← 0, p← 0 {initialization}
for each request j = 1, 2, . . . , n do {n is unknown}

if j = dxi+δe then {update guess}
p← j
i← i+ 1

return p

While the suggested doubling strategy is fairly standard, the analysis requires
a very careful case distinction. Moreover, this algorithm is optimal, which will
be proved in Section 3.

One may wonder about the choice of δ to be a real-valued quantity of pre-
sumably infinite precision. This assumption is only taken for convenience in the
analysis; a bit precision of O(log n) is enough to provide sufficient granularity.
This does not mean that n needs to be known in advance in order to deter-
mine the O(log n) random bits: We can choose additional random bits for the
description of δ when necessary as the algorithm proceeds.

After giving the analysis of our main algorithm, we further present an algo-
rithm that uses only a single random bit and achieves an expected deviation of
0.25n. We also prove that this is best possible for the class of algorithms that
only use a single random bit. Observe that deterministic algorithms (i.e., using
no randomness at all) fail for guessing the center: If the input sequence ends ex-
actly when the deterministic algorithm has updated its guess, then the deviation
is as large as it could be. Without randomness, this is unavoidable.

Theorem 1. There is a constant x ≈ 3.052 such that:

E
[
∆n
Ax

]
≈ 0.172n+ O(1) .
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Proof. Let α ∈ [0, 1) and i ∈ N be such that n = 2xi+α. Then the central
position is n

2 = xi+α. In order to bound the expected deviation, we conduct a
case distinction for various ranges of α and δ. We distinguish two ranges for α,
and within each case, we distinguish three ranges of δ.

Case 1: α > 1− logx 2 (note that we assumed x > 2). In order to bound ∆n
Ax

,
we split the possible values of δ into three subsets:

– If δ ∈ (0, α+logx 2−1], then we have that xδ+i+1 ≤ 2xi+α = n. In this case,
the deviation is ∆n

Ax
= xδ+i+1 − n/2 = xδ+i+1 − xi+α.

– If δ ∈ (α + logx 2 − 1, α], then we have that xδ+i+1 > n but xδ+i ≤ n
2 . In

this case, ∆n
Ax

= xi+α − xδ+i.
– If δ ∈ (α, 1), then we have that xδ+i+1 > n and xδ+i ∈ (n2 , n). In this case,
∆n
Ax

= xδ+i − xi+α.

Using these observations, we can bound the expected deviation as follows:

E
[
∆n
Ax

]
=

∫ α+logx 2−1

0

(xδ+i+1 − xi+α)dδ +

∫ α

α+logx 2−1
(xα+i − xδ+i)dδ

+

∫ 1

α

(xδ+i − xα+i)dδ

= xi+α ·
(

1− 2 logx 2 +
2

x lnx

)
.

Case 2: α ≤ 1− logx 2. We deal with this case similarly, but we need to group
the possible values for δ in a different way:

– If δ ∈ (0, α], then xδ+i+1 > n but xδ+i ≤ n
2 . In this case, ∆n

Ax
= xi+α−xδ+i.

– If δ ∈ (α, α + logx 2], then xδ+i > n
2 and xδ+i ≤ n. In this case, ∆n

Ax
=

xδ+i − xi+α.
– If δ ∈ (α+ logx 2, 1), then xδ+i > n. In this case, ∆n

Ax
= xi+α − xδ+i−1.

Plugging the values above in the formula for the expected value, we obtain
a different sum of integrals, which however leads to the same function as above:

E
[
∆n
Ax

]
=

∫ α

0

(xα+i − xδ+i)dδ +

∫ α+logx 2

α

(xδ+i − xi+α)dδ

+

∫ 1

α+logx 2

(xα+i − xδ+i−1)dδ

= xi+α ·
(

1− 2 logx 2 +
2

x lnx

)
.

Moreover, the factor 1− 2 logx 2 + 2
x ln x above is independent of α. Thus, it re-

mains to find a value of x that minimizes f(x)
def
= 1−2 logx 2+ 2

x ln x . Observe that

f ′(x) = − 2
x2 ln2 x

− 2
x2 ln x+ ln 2

x ln2 x
, and f ′(x) = 0 if and only if x = log2(ex). With

a simple transformation, the latter is equivalent to zez = − ln 2
e with z = −x ln 2,
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so the value that minimizes f(x) can be computed as xmin = −W−1(− ln 2/e)
ln 2 ≈

3.052, where W−1 is the lower branch of Lambert’s W function. The claim of the
theorem follows by calculating f(xmin) ≈ 0.344. The additive O(1) corresponds
to the approximation of the finite range of δ by a continuous distribution. ut

Next, we give an algorithm that only relies on a single random bit. We prove
that its expected deviation from the center is 0.25n, which is best possible.

Algorithm 3 Single-bit algorithm A0

i← 0 or 1 with probability 1/2 each, p← 0 {initialization}
for each request j = 1, 2, . . . n do {n is unknown}

if j = 2i then
p← j {update guess to current position}
i← i+ 2

return p

Theorem 2. The expected deviation of algorithm A0 is E
[
∆n
A0

]
≤ 0.25n, which

is optimal for the class of algorithms that only use a single random bit.

Proof. Let α ∈ [0, 1) and i ∈ N be such that the length of the sequence is
n = 2 · 2i+α. Since 2i+2 > n, the algorithm reports either position 2i or position
2i+1, each with probability 1/2. In the first case, the deviation from the center
is n/2 − 2i, while in the second case it is 2i+1 − n/2. Thus, in expectation, we
have, as required, E

[
∆n
A0

]
= 1

2 · (n/2− 2i) + 1
2 · (2

i+1 − n/2) = 2i−1 ≤ n/4.
In order to see that this is best possible for the class of algorithms that only

use a single random bit, first observe that a randomized algorithm that uses a
single random bit is a uniform distribution over two deterministic algorithms.
Note further that each deterministic algorithm is a fixed (potentially infinite)
sequence of positions at which it updates its guess. Suppose that B is such
a randomized algorithm, and let S1 = {p1, p2, . . . } and S2 = {q1, q2, . . . } be
the corresponding sequences. Now, if the sequence has length pi for some i, B
would have maximal deviation if it chooses the first sequence (with probability
1/2), and may have minimal deviation 0 (with the remaining 1/2 probability) if
the largest qj ≤ pi is equal to pi/2. Therefore the smallest expected deviation
achievable is n/4, which implies that our algorithm is optimal. ut

3 Lower Bound

We prove that no algorithm can achieve a smaller expected deviation than the
one claimed in Theorem 1. The proof applies Yao’s Minimax principle and uses
a hard input distribution over all-ones sequences of length n ∈ [nmin, nmax], for
some large values of nmin and nmax, where the probability that the sequence is
of length n is proportional to 1/n.

Theorem 3. For any randomized algorithm A, the expected deviation is

E [∆n
A] ≥ 0.172n.
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Proof. We will prove the theorem by using Yao’s Minimax principle [4]. To
this end, let us first consider an arbitrary deterministic algorithm Adet. As-
sume the length of the sequence is random in the interval X := [nmin, nmax]
for large values of nmax and nmin with nmax > 2 · nmin and has the follow-
ing distribution: The sequence ends at position n ∈ X with probability pn

which is proportional to 1
n , i.e., using the definition S =

nmax∑
m=nmin

1

m
, we have

pn := P[sequence is of length n] = 1
n·S .

In order to apply the Minimax principle, we will consider a normalized mea-
sure of the performance of an algorithm. For an algorithm A, let BnA denote the
larger of the two parts created by the algorithm for a sequence of length n, and

let RnA =
Bn
A

n/2 ∈ [1, 2]. Then it is easily verified that

∆n
A = BnA −

n

2
= n · R

n
A − 1

2
.

We will show that for each deterministic algorithm Adet, if the input is dis-
tributed as above, then E

[
RnAdet

]
≥ 1.344 − O(ln−1 nmax

nmin
), where the expecta-

tion is taken over the distribution of n. Then, by the Minimax principle, every
randomized algorithm A has a ratio of at least RnA ≥ E

[
RnAdet

]
≥ 1.344 −

O(ln−1 nmax

nmin
). Since the ratio nmax

nmin
is arbitrary, this implies the theorem.

Let J denote the set of requests at which Adet updates its guess when
processing the all-ones sequence of length nmax. Note that the positions of
guess updates by Adet on sequences of shorter lengths are a subset of J . Let
I = J ∩X = {i1, . . . , ik} (the ij are ordered with increasing value).

We bound E
[
RnAdet

]
=
∑nmax

n=nmin
pnR

n
Adet

by separately bounding every par-
tial sum in the following decomposition:

E
[
RnAdet

]
= E(nmin, i1) + E(i1, i2) + · · ·+ E(ik−1, ik) + E(ik, nmax),

where for each a < b, E(a, b) =
∑b−1
n=a pnR

n
Adet

. The first and last terms need
special care, so we will start with bounding the other terms. In the following,
Hq
p =

∑q
n=p

1
n denotes partial harmonic sums for q ≥ p ≥ 1. Observe that

S = Hnmax
nmin

. We proceed in three steps:

1. Consider an index 1 ≤ j < k and let us bound the sum E(ij , ij+1). Let us
denote a = ij and b = ij+1. We need to consider two cases.

Case 1: b ≤ 2a. Then for all n ∈ {a, . . . , b − 1}, we have BnAdet
= a (since

n/2 < a). Then:

E(a, b) ≥
b−1∑
n=a

1

nS
· a

n/2
≥ 2a

S

b−1∑
n=a

1

n(n+ 1)
=

2a

S

(
1

a
− 1

b

)
> 1.4 · H

b−1
a

S
,

(1)
where the last inequality can be proved as follows. First, it can be checked
by direct inspection that for Φ(a, b) = 2(1 − a

b )/Hb−1
a and b > a, it holds
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that Φ(a, b + 1) < Φ(a, b). Hence, recalling that b ≤ 2a and using standard
approximations of harmonic sums, we obtain

Φ(a, b) ≥ Φ(a, 2a) = 1/H2a−1
a ≥ 1

ln 2 + 1
a

> 1.4,

where the last inequality holds for large enough a = ij , e.g., ij ≥ nmin

2 ≥ 50.

Case 2: b > 2a. In this case, for all n = a, . . . , 2a − 1, if the sequence is of
length n, then BnAdet

= a, as in case 1. However, when n ≥ 2a, then n/2 ≥ a,

so BnAdet
= n− a. Using these observations, we can bound E

[
RnAdet

]
:

E
[
RnAdet

]
=

2a−1∑
n=a

1

nS

a

n/2
+

b−1∑
n=2a

1

nS

n− a
n/2

≥ 2a

S

2a−1∑
n=a

1

n(n+ 1)
+

2

S
Hb

2a+1 −
2a

S

b−1∑
n=2a

1

n(n+ 1)

=
2a

S

(
1

a
− 1

2a

)
+

2

S
Hb

2a+1 −
2a

S

(
1

2a
− 1

b

)
=

2a

Sb
+

2

S
(Hb

a −H2a
a )

=
Hb
a

S
·
(

2 +
2a

bHb
a

− 2H2a
a

Hb
a

)
,

where the third line is obtained by using the identity Hb
2a+1 = Hb

a − H2a
a .

Again, using a standard approximation for harmonic sums and setting x = b
a ,

we can approximate:

2 +
2a

bHb
a

− 2H2a
a

Hb
a

≥ 2 + 2a
b ln b

a

− ln 2
ln b

a

−O(a−1)

= 2 + 2
x ln x − 2 logx 2−O(a−1).

Note that the function f(x) = 2+ 2
x ln x−2 logx 2 is exactly the same that was

minimized in the proof of Thm. 1, with an additional term +1, and achieves
its minimum in (1,∞) at xmin ≈ 3.052, giving f(xmin) ≈ 1.344. Thus, we

have E(ij , ij+1) ≥
H

ij+1−1

ij

S (1.344−O( 1
ij

)).

2. The term E(ik, nmax) can be bounded by
Hnmax−1

ik

S (1.344 − O( 1
ik

)) by an
identical argument as above.

3. The term E(nmin, i1) needs a slightly different approach. Let i0 denote the
last position where the algorithm updates its guess before nmin. We can
assume that i0 ≥ nmin/2, as otherwise the algorithm could only profit by
updating its guess at position nmin/2. We consider two cases. First, if i1 ≤
2i0, then we simply assume the algorithm performs optimally in the range
[nmin, i1):

E(nmin, i1) =
Hi1−1
nmin

S
≥ 1.344 ·

Hi1−1
nmin

S
− 0.5

Hi1−1
nmin

S
> 1.344 ·

Hi1−1
nmin

S
− 1/S,
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since (recalling that i1 ≤ 2i0 ≤ 2nmin), Hi1
nmin

< H2nmin
nmin

< 1.
On the other hand, when i1 > 2i0 (and by the discussion above, 2i0 ≥ nmin),
then with calculations similar to the one in Case 2 above, we obtain:

E(xmin, i1) =

2i0−1∑
n=nmin

1

nS

i0
n/2

+

i1−1∑
n=2i0

1

nS

n− i0
n/2

≥ 2i0
S

2i0−1∑
n=nmin

1

n(n+ 1)
+

2

S
Hi1

2i0+1 −
2i0
S

i1−1∑
n=2i0

1

n(n+ 1)

≥ 2

S

(
i0
nmin

+
i0
i1

+Hi1
nmin
−H2i0

nmin

)
≥ 2 ·

Hi1
nmin

S
−O(1/S),

because i0 ≤ nmin and thus H2i0
nmin

< 1.

It remains to plug the obtained estimates into Inequality 1:

E
[
RnAdet

]
= E(nmin, i1) +

k−1∑
j=1

E(ij , ij+1) + E(ik, nmax)

≥ (1.344−O(1/nmin)) ·
Hi1
nmin

+
∑k−1
j=1 H

ij+1−1
ij

+Hnmax
ik

S
−O(1/S)

= 1.344−O(1/S).

This completes the proof. ut

4 Weighted Sequences

4.1 Algorithm

The algorithm for weighted instances is an adaptation of the algorithm Ax pre-
sented in Section 2. Namely, the guess is updated as soon as adding the current
weight wj to the weight of the prefix that has already been processed

∑j−1
i=1 wi

increases the total weight to be at least dxi+δe, i.e., if
∑j−1
i=1 wi < dxi+δe ≤∑j

i=1 wi. We will keep the notation Ax for the modified algorithm.

Theorem 4. There is a constant value of x ≈ 5.357 such that

E
[
∆X
Ax

]
≤ 0.313W +O(1)

holds for every weighted sequence X of total weight W .

Proof (Sketch). Let X = w1, w2, . . . , wn be the input sequence of total weight
W , and let m be such that

∑
i≤m wi = W

2 . Then, wm is the central weight of
the sequence. We will argue first that replacing all wi left of wm including wm
by a sequence of

∑
i≤m wi unit requests, and replacing all wi right of wm by

a single large request of weight
∑
i>m wi worsens the approximation factor of
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the algorithm. Indeed, suppose that the algorithm attempts to update its guess
at a position j that falls on an element wi, which is located left of wm. Then
the algorithm updates its guess after wi, bringing the guess closer to the center
than if wi were of unit weight. Similarly, suppose that the algorithm attempts to
update its guess at position j that falls on an element wi, which is located right
of wm. By replacing all weights located to the right of wm by a single heavy
element, the algorithm has to place its guess at the end of the sequence, which
gives the worst possible deviation. Thus, we suppose from now on that X is of
the form X = 1 . . . 1B, where B = W/2.

After this simplification, via a case distinction as in the proof of Thm. 1 it

can be shown that E[∆X
Ax

] ≤ W
2 · g(x) + O(1), where g(x)

def
= 1 − 1

ln x + 2
x ln x .

It can then be shown that xmin = −2W−1(− 1
2e ) ≈ 5.3567 minimizes g(x) and

g(xmin) ≈ 0.627, which implies the theorem. ut

Remark. Recall that we work with the assumption that the input sequence
X = w1, . . . , wn can be split into two parts of exactly equal weight. This may
seem like an artificial restriction. It is, however, necessary for a meaningful prob-
lem definition: Suppose we allowed arbitrary sequences and the goal is to min-
imize the distance between the guess and the most central position, i.e., the
position c such that max{

∑c
i=1 wi,

∑n
i=c+1 wi} is minimized. Consider now the

instance X = 11 . . . 1W , where W is extremely heavy (e.g., W is a 0.99 fraction
of the entire sequence). Then the most central position is the position of the
last 1, while an algorithm that places a guess after W is at distance W from
the most central position. We believe that this should not be penalized since
such an input sequence does not have a good central position. An alternative
problem formulation, which is meaningful when applied to the previously de-
scribed instance, is obtained when asking for a guess that minimizes the size of
the larger part as compared to the larger part in a most central split. Indeed,
this formulation is coherent with the problem of partitioning integer sequences.
Our algorithm for weighted sequences can be analyzed for this situation and
gives a 1.628 approximation.

4.2 Lower Bound

Note that the expected deviation of 0.313W is tight for the algorithm Ax on
weighted sequences. This is achieved on sequences consisting of W/2 unit weight
elements followed by an element of weight W/2. However, we were not able to
obtain a matching lower bound. The main difficulty in applying the Minimax
principle is that in the weighted case, the deterministic algorithm may know the
probability distribution of the individual weights. Instances similar to the one
described above become easy if the algorithm knows their structure. Instead, we
prove a lower bound of 0.25W using a different construction.

Theorem 5. For every randomized algorithm A, there is a weighted instance X
of total weight W , such that the expected deviation is E

[
∆X
A
]
≥ 0.25W −O(1).
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Proof (Sketch). Let Xi = 20, 20, 21, 22, . . . , 2i−1 denote the exponentially in-
creasing sequence of length i, and Wi = 2i denotes the weight of Xi. Note that
the middle of Xi is the position before the weight 2i−1. Let further nmin, nmax

be large integers with nmax ≥ 2nmin, and denote S = [nmin, nmax]. We consider
the performance of any deterministic algorithm Adet on the uniform input dis-
tribution over the set Σ = {Xi : i ∈ S} of exponentially increasing sequences.
As in the proof of Thm. 3, we need a normalized performance measure in order
to apply the Minimax lemma. For an algorithm A, let BXA denote the larger
of the two parts that the algorithm creates on the input sequence X, and let

RXA =
BX
A

W/2 ∈ [1, 2]. Again, note that ∆X
A = BXA − W/2 = W · (RXA − 1)/2.

Hence, showing that E
[
RXAdet

]
≥ 1.5 for every deterministic algorithm implies

the corresponding bound E
[
∆X
A
]
≥ 0.25W for every randomized algorithm, by

Yao’s lemma.
Let J be the set of positions where Adet updates its guess on input Xnmax

.
Note that the set of positions on any other input of Σ is a subset of J . Let
I = J ∩ S = {i1, . . . , ik} be the positions within the interval S (ordered so that
ij < ij+1, for every j).

We bound now the expected ratio of Adet, where the expectation is taken over
the inputs Σ. In the formulas below, we will use the abbreviation Ri = RXi

Adet
,

as we will only deal with such ratios. Then:

E [Rn] =
1

nmax − nmin + 1
·
nmax∑
n=nmin

Rn , and

nmax∑
n=nmin

Rn =

i1−1∑
n=nmin

Rn︸ ︷︷ ︸
I

+

i2−1∑
n=i1

Rn + · · ·+
ik−1∑
n=ik−1

Rn +

nmax∑
n=ik

Rn︸ ︷︷ ︸
II

.

We bound I, II, and
∑ij+1−1
n=ij

Rn for every 1 ≤ j ≤ k−1, separately. Recall that

for every i the half-weight of Xi is Wi/2 = 2i−1. First, observe that for every

1 ≤ j ≤ k − 1, we have the worst ratio Rij = 2ij

2ij−1 = 2 when the sequence ends

at a guess update, and the best ratio Rij+1 = 1 when it ends one item after a
guess update and if ij + 1 < ij+1. Generally, when it ends at an intermediate
position ij + a such that a ≥ 2 and ij + a < ij+1, then the last guess update is
after the weight ij , while the middle is just before ij + a so we have

Rij+a =
2ij+a − 2ij−1

2ij+a−1
≥ 1.75.

These bounds together imply that
∑ij+1−1
n=ij

Rn ≥ 1.5(ij+1 − ij).
It can be shown by similar arguments that I ≥ 1.5(i1 − nmin) − 1.25 and

II > 1.5(nmax − ik)− 1.25. Putting the partial bounds together, we can bound
E
[
RnAdet

]
by:

E
[
RnAdet

]
≥ 1.5(nmax − nmin + 1)− 2 · 1.25

nmax − nmin + 1
= 1.5−O(n−1max).

11



Since nmax can be chosen arbitrarily large, the latter bound on the expected per-
formance of every deterministic algorithm then implies the claim of the theorem
by applying Yao’s principle, as described above. ut

5 Conclusion

In this paper, we gave an algorithm for preemptively guessing the center of a
request sequence. It has expected deviation 0.172n from the central position on
an instance of length n. We proved that this is optimal. We extended our algo-
rithm to weighted sequences and showed that it has expected deviation 0.313W ,
where W is the total weight of the input sequence. We also gave a lower bound
showing that no algorithm achieves an expected deviation smaller than 0.25W .

The most intriguing open problem is to close the gap between the upper
and lower bounds for weighted sequences. Progress could potentially be made
by combining our lower bound for unweighted sequences with an exponentially
increasing sequence as it is used in our lower bound for weighted sequences. For
this to be successful, a better understanding of our lower bound for unweighted
sequences could be beneficial, since it relies on a non-uniform input distribution
which renders it difficult to extend it.
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