29 research outputs found

    mHealth in urology

    Get PDF
    Introduction: Smartphones are increasingly playing a role in healthcare and previous studies assessing medical applications (apps) have raised concerns about lack of expert involvement and low content accuracy. However, there are no such studies in Urology. We reviewed Urology apps with the aim of assessing the level of participation of healthcare professionals (HCP) and scientific Urology associations in their development. Material and Methods: A systematic search was performed on PubMed, Apple's App Store and Google's Play Store, for Urology apps, available in English. Apps were reviewed by three graders to determine the app's platform, target customer, developer, app type, app category, price and the participation of a HCP or a scientific Urology association in the development. Results: The search yielded 372 apps, of which 150 were specific for Urology. A fifth of all apps had no HCP involvement (20.7%) and only a third had been developed with a scientific Urology association (34.7%). The lowest percentage of HCP (13.4%) and urological association (1.9%) involvement was in apps designed for the general population. Furthermore, there was no contribution from an Urology society in "Electronic Medical Record" nor in "Patient Information" apps. A limitation of the study is that only Android and iOS apps were reviewed. Conclusions: Despite the increasing Mobile Health (mHealth) market, this is the first study that demonstrates the lack of expert participation in the design of Urology apps, particularly in apps designed for the general public. Until clear regulation is enforced, the urological community should help regulate app development. Maintaining a register of certified apps or issuing an official scientific seal of approval could improve overall app quality. We propose that urologists become stakeholders in mHealth, shaping future app design and promoting peer-review app validation

    Hydroxylases regulate intestinal fibrosis through the suppression of ERK mediated TGF-β1 signaling

    Get PDF
    Fibrosis is a complication of chronic inflammatory disorders such as inflammatory bowel disease (IBD), a condition which has limited therapeutic options and often requires surgical intervention. Pharmacologic inhibition of oxygen-sensing prolyl hydroxylases (PHD), which confer oxygen-sensitivity upon the hypoxia inducible factor (HIF) pathway, has recently been shown to have therapeutic potential in colitis, although the mechanisms involved remain unclear. Here, we investigated the impact of hydroxylase inhibition on inflammation-driven fibrosis in a murine colitis model. Mice exposed to dextran sodium sulfate followed by period of recovery developed intestinal fibrosis characterized by alterations in the pattern of collagen deposition and infiltration of activated fibroblasts. Treatment with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) ameliorated fibrosis. TGF-β1 is a key regulator of fibrosis which acts through the activation of fibroblasts. Hydroxylase inhibition reduced TGF-β1-induced expression of fibrotic markers in cultured fibroblasts suggesting a direct role for hydroxylases in TGF-β1 signalling. This was at least in part due to inhibition of non-canonical activation of extracellular signal-regulated kinase (ERK) signalling. In summary, pharmacologic hydroxylase inhibition ameliorates intestinal fibrosis, through suppression of TGF-β1-dependent ERK activation in fibroblasts. We hypothesize that in addition to previously reported immunosupressive effects, hydroxylase inhibitors independently suppress pro-fibrotic pathway

    FIH regulates metabolism through OTUB1

    Get PDF
    The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.This is the final version of the article. It was first available from PLOS via http://dx.doi.org/10.1371/journal.pbio.100234

    Species differential regulation of COX2 can be described by an NFκB-dependent logic AND gate

    Get PDF
    Cyclooxygenase 2 (COX2), a key regulatory enzyme of the prostaglandin/eicosanoid pathway, is an important target for anti-inflammatory therapy. It is highly induced by pro-inflammatory cytokines in a Nuclear factor kappa B (NFκB)-dependent manner. However, the mechanisms determining the amplitude and dynamics of this important pro-inflammatory event are poorly understood. Furthermore, there is significant difference between human and mouse COX2 expression in response to the inflammatory stimulus tumor necrosis factor alpha (TNFα). Here, we report the presence of a molecular logic AND gate composed of two NFκB response elements (NREs) which controls the expression of human COX2 in a switch-like manner. Combining quantitative kinetic modeling and thermostatistical analysis followed by experimental validation in iterative cycles, we show that the human COX2 expression machinery regulated by NFκB displays features of a logic AND gate. We propose that this provides a digital, noise-filtering mechanism for a tighter control of expression in response to TNFα, such that a threshold level of NFκB activation is required before the promoter becomes active and initiates transcription. This NFκB-regulated AND gate is absent in the mouse COX2 promoter, most likely contributing to its differential graded response in promoter activity and protein expression to TNFα. Our data suggest that the NFκB-regulated AND gate acts as a novel mechanism for controlling the expression of human COX2 to TNFα, and its absence in the mouse COX2 provides the foundation for further studies on understanding species-specific differential gene regulation

    Effects of 3,4-Methylenedioxymethamphetamine Administration on Retinal Physiology in the Rat

    Get PDF
    3,4-Methylenedioxymethamphetamine (MDMA; ecstasy) is known to produce euphoric states, but may also cause adverse consequences in humans, such as hyperthermia and neurocognitive deficits. Although MDMA consumption has been associated with visual problems, the effects of this recreational drug in retinal physiology have not been addressed hitherto. In this work, we evaluated the effect of a single MDMA administration in the rat electroretinogram (ERG). Wistar rats were administered MDMA (15 mg/kg) or saline and ERGs were recorded before (Baseline ERG), and 3 h, 24 h, and 7 days after treatment. A high temperature (HT) saline-treated control group was also included. Overall, significantly augmented and shorter latency ERG responses were found in MDMA and HT groups 3 h after treatment when compared to Baseline. Twenty-four hours after treatment some of the alterations found at 3 h, mainly characterized by shorter latency, tended to return to Baseline values. However, MDMA-treated animals still presented increased scotopic a-wave and b-wave amplitudes compared to Baseline ERGs, which were independent of temperature elevation though the latter might underlie the acute ERG alterations observed 3 h after MDMA administration. Seven days after MDMA administration recovery from these effects had occurred. The effects seem to stem from specific changes observed at the a-wave level, which indicates that MDMA affects subacutely (at 24 h) retinal physiology at the outer retinal (photoreceptor/bipolar) layers. In conclusion, we have found direct evidence that MDMA causes subacute enhancement of the outer retinal responses (most prominent in the a-wave), though ERG alterations resume within one week. These changes in photoreceptor/bipolar cell physiology may have implications for the understanding of the subacute visual manifestations induced by MDMA in humans

    Hypoxia-inducible factor (HIF) network: insights from mathematical models

    Get PDF
    Oxygen is a crucial molecule for cellular function. When oxygen demand exceeds supply, the oxygen sensing pathway centred on the hypoxia inducible factor (HIF) is switched on and promotes adaptation to hypoxia by up-regulating genes involved in angiogenesis, erythropoiesis and glycolysis. The regulation of HIF is tightly modulated through intricate regulatory mechanisms. Notably, its protein stability is controlled by the oxygen sensing prolyl hydroxylase domain (PHD) enzymes and its transcriptional activity is controlled by the asparaginyl hydroxylase FIH (factor inhibiting HIF-1). To probe the complexity of hypoxia-induced HIF signalling, efforts in mathematical modelling of the pathway have been underway for around a decade. In this paper, we review the existing mathematical models developed to describe and explain specific behaviours of the HIF pathway and how they have contributed new insights into our understanding of the network. Topics for modelling included the switch-like response to decreased oxygen gradient, the role of micro environmental factors, the regulation by FIH and the temporal dynamics of the HIF response. We will also discuss the technical aspects, extent and limitations of these models. Recently, HIF pathway has been implicated in other disease contexts such as hypoxic inflammation and cancer through crosstalking with pathways like NFκB and mTOR. We will examine how future mathematical modelling and simulation of interlinked networks can aid in understanding HIF behaviour in complex pathophysiological situations. Ultimately this would allow the identification of new pharmacological targets in different disease settings.Deposited by bulk impor

    FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1

    No full text
    The asparagine hydroxylase, factor inhibiting HIF (FIH), confers oxygen-dependence upon the hypoxia-inducible factor (HIF), a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1) is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.European Commission - Seventh Framework Programme (FP7)Science Foundation IrelandWellcome TrustAustralian Research CouncilUniversity of ZurichSwiss National Science FoundationSystems Biology Irelan

    Hypercapnia Suppresses the HIF-dependent Adaptive Response to Hypoxia

    Get PDF
    Molecular oxygen and carbon dioxide are the primary gaseous substrate and product of oxidative metabolism, respectively. Hypoxia (low oxygen) and hypercapnia (high carbon dioxide) are co-incidental features of the tissue microenvironment in a range of pathophysiologic states, including acute and chronic respiratory diseases. The hypoxia-inducible factor (HIF) is the master regulator of the transcriptional response to hypoxia; however, little is known about the impact of hypercapnia on gene transcription. Because of the relationship between hypoxia and hypercapnia, we investigated the effect of hypercapnia on the HIF pathway. Hypercapnia suppressed HIF-α protein stability and HIF target gene expression both in mice and cultured cells in a manner that was at least in part independent of the canonical O2-dependent HIF degradation pathway. The suppressive effects of hypercapnia on HIF-α protein stability could be mimicked by reducing intracellular pH at a constant level of partial pressure of CO2 Bafilomycin A1, a specific inhibitor of vacuolar-type H(+)-ATPase that blocks lysosomal degradation, prevented the hypercapnic suppression of HIF-α protein. Based on these results, we hypothesize that hypercapnia counter-regulates activation of the HIF pathway by reducing intracellular pH and promoting lysosomal degradation of HIF-α subunits. Therefore, hypercapnia may play a key role in the pathophysiology of diseases where HIF is implicated.Science Foundation IrelandNational Institutes of Healt

    Deletion of the neuropeptide Y (NPY) Y(1) receptor gene reveals a regulatory role of NPY on catecholamine synthesis and secretion

    Get PDF
    The contribution of neuropeptide Y (NPY), deriving from adrenal medulla, to the adrenosympathetic tone is unknown. We found that in response to NPY, primary cultures of mouse adrenal chromaffin cells secreted catecholamine, and that this effect was abolished in cultures from NPY Y(1) receptor knockout mice (Y(1)−/−). Compared with wild-type mice (Y(1)+/+), the adrenal content and constitutive release of catecholamine were increased in chromaffin cells from Y(1)−/− mice. In resting animals, catecholamine plasma concentrations were higher in Y(1)−/− mice. Comparing the adrenal glands of both genotypes, no differences were observed in the area of the medulla, cortex, and X zone. The high turnover of adrenal catecholamine in Y(1)−/− mice was explained by the enhancement of tyrosine hydroxylase (TH) activity, although no change in the affinity of the enzyme was observed. The molecular interaction between the Y(1) receptor and TH was demonstrated by the fact that NPY markedly inhibited the forskolin-induced luciferin activity in Y(1) receptor-expressing SK-N-MC cells transfected with a TH promoter sequence. We propose that NPY controls the release and synthesis of catecholamine from the adrenal medulla and consequently contributes to the sympathoadrenal tone
    corecore