
Hypercapnia suppresses the HIF-dependent adaptive response to
hypoxia

Selfridge, A. C., Cavadas, M. A. S., Scholz, C. C., Campbell, E. L., Welch, L. C., Lecuona, E., ... Taylor, C. T.
(2016). Hypercapnia suppresses the HIF-dependent adaptive response to hypoxia. Journal of Biological
Chemistry, 291(22), 11800-11808. DOI: 10.1074/jbc.M116.713941

Published in:
Journal of Biological Chemistry

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
 © 2016 American Society for Biochemistry and Molecular Biology O
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/96664146?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/hypercapnia-suppresses-the-hifdependent-adaptive-response-to-hypoxia(75068a2d-b2db-4e08-a2cc-1107b77d09db).html


Hypercapnia Suppresses the HIF-dependent Adaptive
Response to Hypoxia*

Received for publication, January 8, 2016, and in revised form, March 24, 2016 Published, JBC Papers in Press, April 4, 2016, DOI 10.1074/jbc.M116.713941

Andrew C. Selfridge‡§, Miguel A. S. Cavadas§¶1, Carsten C. Scholz‡§¶�, Eric L. Campbell**, Lynn C. Welch‡‡2,
Emilia Lecuona‡‡2, Sean P. Colgan**3, Kim E. Barrett‡§4, Peter H. S. Sporn‡‡§§5, Jacob I. Sznajder‡‡2,
Eoin P. Cummins‡§6, and Cormac T. Taylor‡§¶6,7

From the ‡School of Medicine and Medical Science, §Conway Institute, and ¶Systems Biology Ireland, University College Dublin,
Belfield, Dublin 4, Ireland, the �Institute of Physiology, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland, the
**University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado 80045, the ‡‡Northwestern University Feinberg
School of Medicine, Chicago, Illinois 60611, and the §§Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612

Molecular oxygen and carbon dioxide are the primary gaseous
substrate and product of oxidative metabolism, respectively.
Hypoxia (low oxygen) and hypercapnia (high carbon dioxide)
are co-incidental features of the tissue microenvironment in a
range of pathophysiologic states, including acute and chronic
respiratory diseases. The hypoxia-inducible factor (HIF) is the
master regulator of the transcriptional response to hypoxia;
however, little is known about the impact of hypercapnia on
gene transcription. Because of the relationship between hypoxia
and hypercapnia, we investigated the effect of hypercapnia on
the HIF pathway. Hypercapnia suppressed HIF-� protein stabil-
ity and HIF target gene expression both in mice and cultured
cells in a manner that was at least in part independent of the
canonical O2-dependent HIF degradation pathway. The sup-
pressive effects of hypercapnia on HIF-� protein stability could
be mimicked by reducing intracellular pH at a constant level of
partial pressure of CO2. Bafilomycin A1, a specific inhibitor of
vacuolar-type H�-ATPase that blocks lysosomal degradation,
prevented the hypercapnic suppression of HIF-� protein. Based
on these results, we hypothesize that hypercapnia counter-reg-
ulates activation of the HIF pathway by reducing intracellular
pH and promoting lysosomal degradation of HIF-� subunits.
Therefore, hypercapnia may play a key role in the pathophysiol-
ogy of diseases where HIF is implicated.

Current atmospheric CO2 levels are relatively low when
compared with those recorded throughout the natural history
of the planet (1). Not surprisingly, therefore, a range of organ-

isms as diverse as bacteria, fungi, plants, and mammals mount
physiologic responses to hypercapnia (2). It is now clear that
CO2, like other physiologic gases such as oxygen and nitric
oxide, can be sensed by cells and can elicit adaptive transcrip-
tional responses (2– 4).

Because O2 consumption is coupled to CO2 production, an
intimate inverse relationship exists between the levels of these
gases in cells and tissues. Furthermore, O2 and CO2 levels may
become perturbed during certain pathophysiologic states (3, 5).
Hypoxia and hypercapnia can co-occur in respiratory disorders
such as obstructive sleep apnea syndrome, pneumonia, and
chronic obstructive pulmonary disease (6, 7). In acute lung
injury hypoxia may arise, whereas permissive hypercapnia is
often tolerated as a protective ventilatory strategy in patients
presenting with this disorder (8, 9). Hypercapnia and hypoxia
also influence inflammatory processes (10 –12). During inflam-
mation, oxygen consumption is significantly elevated, leading
to tissue hypoxia. It is likely that this also has consequences for
tissue CO2 levels (3, 11).

HIF8 (which comprises the HIF-1, HIF-2, and HIF-3 iso-
forms) is the master transcriptional regulator of the cellular
response to hypoxia (13). Canonical HIF degradation relies on
the activity of O2-dependent prolyl hydroxylases 1–3 (14). In
normoxia, prolyl hydroxylases enzymatically modify HIF-�
subunits on proline residues within the oxygen-dependent deg-
radation domain (ODD) (14). HIF-� is subsequently targeted
for ubiquitination and proteasomal destruction, with this reac-
tion being mediated by the von Hippel Lindau (pVHL) E3 ligase
complex. The asparaginyl hydroxylase factor inhibiting HIF
confers a second mechanism of O2-dependent repression by
preventing HIF binding to CREB-binding protein/p300. In
hypoxia, when oxygen demand exceeds supply, the O2-depen-
dent hydroxylases are no longer active. HIF-� stabilizes and
translocates to the nucleus, where it dimerizes with its consti-
tutively expressed � subunit. The HIF heterodimer binds to
hypoxia response elements at or near promoters and enhancers
of genes, where it promotes the formation of a transcriptional
complex. HIF regulates the transcription of a host of targets,
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including those with angiogenic, vasodilatory, inflammatory,
and glycolytic functions (13–14). Recently, evidence has
emerged for a separate O2-independent, non-canonical HIF
degradation pathway that is reliant on chaperone-mediated lys-
osomal autophagy (15–18).

A number of previous publications that predate the discovery
of HIF reported the suppression of the HIF-target erythropoi-
etin (EPO) by hypercapnia, although the mechanism underpin-
ning this suppression has not been established (19 –24). In this
study, we examine the relationship between physiologically rel-
evant levels of CO2, the HIF pathway, and the HIF target gene
erythropoietin. Because hypoxia and hypercapnia often occur
co-incidentally in disease, manipulation of HIF with CO2 might
represent a novel window of opportunity in the treatment of
conditions in which hypoxia is a constituent feature.

Experimental Procedures

Animal Model of Hypercapnia—Two separate sets of in vivo
experiments were performed. In each case, mice were adminis-
tered an 8-mg intraperitoneal injection of the pharmacologic
hypoxia mimetic dimethyloxalylglycine (DMOG) or the equiv-
alent saline vehicle control (25). Mice were then placed in
hypercapnic conditions (10% CO2/21% O2) or in room air
(0.04% CO2/21% O2) for 6 h. Experiment A was performed at
Northwestern University, using 9- to 11-week-old male
C57BL/6 mice that were sacrificed with Euthasol euthanizing
solution. Experiment B was conducted at University of Colo-
rado Denver, with 18- to 20-week old female ODD-Luc mice
maintained on an Friend virus B background (26). These mice
were anesthetized with isoflurane prior to sacrifice by exsangui-
nation and cervical dislocation. Both sets of mice were sourced
from The Jackson Laboratory (Bar Harbor, ME.) The in vivo
studies were approved by the Institutional Animal Care and
Use Committees at Northwestern University and the Univer-
sity of Colorado Denver as appropriate. The experimental set
from which each figure originated is referred to in the associ-
ated figure legend. EPO values were determined with either the
Mesoscale mouse/rat hypoxia serum/plasma kit (Mesoscale
Diagnostics, Rockville, MD) or a Quantikine mouse EPO ELISA
(R&D Systems, Minneapolis, MN). To extract protein, mouse
tissue was homogenized in radioimmune precipitation assay
buffer with the TissueLyzer II (Qiagen, Venlo, Netherlands).
The homogenized supernatant was subject to three cycles of
centrifugation (14,000 rpm � 10 min) and sonication.

Cell Culture—Human HEK 293 embryonic kidney cells,
A549 adenocarcinoma alveolar basal epithelial cells, HeLa cer-
vical cancer cells, HCT 116 colorectal carcinoma cells, as well as
renal adenocarcinoma RCC4 and 786-O cells were all used for
in vitro experiments. Cells were maintained according to
ATCC (Manassas, VA) recommendations. Cells were incu-
bated at 37 °C in an atmosphere of 21% O2 and 5% CO2 prior to
experimental exposures.

Hypercapnic and Hypoxic Exposure in Vitro—Cells were
exposed to defined atmospheric conditions in environmental
chambers (Coy Laboratories, Grass Lake, MI). Experimental
atmospheres were designed to mimic the levels of CO2 and O2
recorded in pathophysiologic conditions (27, 28). Normocap-
nia was defined as 5% CO2 equivalent to 35–37 mmHg (normal

physiologic partial pressure of CO2). Hypercapnia in vitro was
defined as 7.5%, 10%, 15%, or 20% CO2. These values are repre-
sentative of CO2 levels encountered in disease that are equiva-
lent to �45 mmHg (physiological hypercapnia partial pressure
of CO2) (29). Normoxia was defined as 21% O2 and hypoxia as
1% O2. The levels of hypercapnia utilized did not significantly
affect cell viability (data not shown). At the end of each exper-
imental exposure, cell lysates were harvested within the cham-
bers to prevent the confounding effects of reoxygenation and
CO2 desaturation.

CO2-buffered Media—Media were supplemented with either
sodium bicarbonate or Tris base to obtain a pH of 7.4 at all CO2
levels, as described in work published previously (10, 30). Media
was pre-equilibrated overnight in the experimental atmo-
sphere. Media pH readings were taken at the beginning and end
of each exposure to ensure uniformity between and within
experiments as well as across the range of CO2 concentrations.

Western Blotting—Proteins were quantified with a protein
assay kit (Bio-Rad) and subsequently resolved in 8 –15% poly-
acrylamide gels. Separated proteins were then transferred to
nitrocellulose membranes and incubated overnight in primary
antibodies. The following primary antibodies were used:
HIF-1� (610958, 1:500, mouse, BD Biosciences), HIF-1�
(MAB3582, 1:500, mouse, Millipore), HIF-2� (NB100-122,
1:1000, rabbit, Novus, Littleton, CO), HIF-1� (NB100-982,
1:1000, rabbit, Novus), hydroxylated HIF-1� (D43B5, 1:1000,
rabbit, Cell Signaling Technology, Beverly, MA), �-actin
(A5316, 1:10,000, mouse, Sigma-Aldrich, St. Louis, MO), pVHL
(2738, 1:1000, rabbit, Cell Signaling Technology), GFP (2555,
1:2000, rabbit, Cell Signaling Technology), and carbonic anhy-
drase IX (H-120, 1:2000, rabbit, Santa Cruz Biotechnology, Pasa
Robles, CA). Secondary antibodies were applied (Cell Signaling
Technology), and bands were detected using a chemilumines-
cence kit (Thermo Scientific, Waltham, MA). Densitometric
values were obtained with ImageJ (National Institutes of
Health, Bethesda, MD).

Intracellular pH Assay—HEK 293 cells were loaded with
5 �M BCECF-AM (2�,7�-bis-(2-carboxyethyl)-5-(and-6)-car-
boxyfluorescein, acetoxymethyl ester; Molecular Probes,
Eugene, OR) dissolved in Opti-MEM 1 (Life Technologies) and
left for 30 min at 5% CO2/95% air. The probe was then removed,
and cells were incubated in normocapnia (5% CO2) or hyper-
capnia (10% CO2) for 4 h. At the end of this time, medium was
removed, and fluorescence was measured using a plate reader.
The fluorophore was excited at 485 nm (�1) and 444 nm (�2),
and emission was recorded at 538 nm in each case. BCECF
intracellular fluorescence was determined by calculating the
ratio of �1/�2.

Media Mixtures for pH Buffering Experiments—For the
experiments outlined in Fig. 4, C–G, four media mixtures were
used to buffer extracellular pH. Dulbecco’s modified Eagle’s
medium 1152 powder (Sigma-Aldrich) was resuspended in
water and supplemented with 10% fetal bovine serum and pen-
icillin/streptomycin antibiotic mixture. Defined amounts of
sodium bicarbonate (NaHCO3) were added to the media to
buffer extracellular pH. In order of increasing acidity, the media
contained the following masses and concentrations of NaHCO3
per 500 ml: mixture 1, 2.21 g, 52.6 mM; mixture 2, 1.23 g, 29.3
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mM; mixture 3, 0.48 g, 11.43 mM; mixture 4, 0 g, 0 mM. Osmo-
larity was balanced using NaCl throughout.

HIF Luciferase Reporter Assay—HeLa cells were transfected
with a firefly luciferase reporter under the control of a hypoxia
response element 24 h before the start of experimental expo-
sure. To quantify luciferase activity, cells were lysed with
reporter lysis buffer (Promega, Madison, WI). Luciferin/ATP
substrate (Promega) was then added to cell lysates, and the
luciferase activity was quantified in a luminometer (Bio-Rad).
�-Galactosidase under the control of an SV40 promoter was
used as a transfection control in these experiments. All values
were normalized to �-galactosidase before -fold changes were
calculated as described previously (31).

Quantitative Real-time PCR—Primers (Eurofins MWG
Operon, Ebersberg, Germany) were used to quantify the levels
of HIF-1� (forward primer ACAAGTCACCACAGGAC-AG)
and HIF-2� (forward primer CAACCTGC-AGCCTCAGTG-
TATC) mRNA. PCR outputs were normalized to 18S rRNA,
and final values were calculated according to the �Ct method.

Statistical Analyses—Data are summarized as mean � S.E.
for n independent experiments. Statistical significance was
assessed using a t test, Mann-Whitney test, or one-way
ANOVA followed by the appropriate post test. Within the fig-
ures, levels of statistical significance are denoted as follows: *,
p � 0.05; **, p � 0.01; ***, p � 0.001; ****, p � 0.0001; NS,
non-significant.

Results

Hypercapnia Suppresses the HIF Pathway in Vivo—EPO is
a prototypic HIF-dependent gene. In a mouse model, we
observed a suppressive effect of hypercapnia on serum EPO
levels (Fig. 1A). This is consistent with previous studies exam-
ining the effect of hypercapnia on EPO expression and indicates
the sensitivity of a well characterized HIF target gene to hyper-
capnia (19 –24). Because EPO is preferentially regulated by the
HIF-2 isoform, we next investigated the impact of hypercapnia
on HIF-2� protein (32). To activate the HIF response, mice
were treated with the hydroxylase inhibitor DMOG prior to
exposure to hypercapnia (10% CO2) or room air (0.04% CO2)
for 6 h. DMOG increased the levels of HIF-2� protein in nor-
mocapnia in both brain and liver tissue (Fig. 1B, data not shown
for brain). Hepatocytes are the main source of extrarenal EPO
in adults (32). In the liver, we found that hypercapnia sup-
pressed DMOG-induced HIF-2� protein stabilization (Fig. 1B).
Similar results were found in brain tissue (data not shown).
Although we were technically unable to consistently detect
HIF-1� protein in tissues by immunoblot, we found that
DMOG treatment stimulated expression of the HIF-1 target
gene, carbonic anhydrase IX, in a manner that was significantly
blunted by hypercapnia (data not shown). In contrast, HIF-1�,
a constitutively expressed stable subunit that is not subject to
O2-dependent degradation, was not affected by either DMOG
or hypercapnia (data not shown). Taken together, these data
suggest that hypercapnia exerts a selectively suppressive effect
on HIF-� protein isoforms and downstream genes in vivo.

Hypercapnia Suppresses the HIF Pathway in Vitro—Consist-
ent with our observations in mice, both basal and DMOG-in-
duced HIF-2� protein levels were suppressed by hypercapnia

(10% CO2) in HEK 293 cells (Fig. 2A). Furthermore, we found
that hypercapnia reduced DMOG-stabilized HIF-1� protein in
HEK 293 cells (Fig. 2B). These results were replicated in other
epithelial and non-epithelial cell lines (A549, HCT 116, THP-1,
and HeLa cells; data not shown). Hypercapnia also decreased
the hypoxic stabilization of HIF-1� protein in HEK 293 and
HeLa cells (data not shown). Moreover, hypercapnia sup-
pressed DMOG-induced HIF-1� protein expression in HEK
293 cells at all degrees of hypercapnia tested (10%, 15%, and 20%
CO2) (Fig. 2C). An alternative hydroxylase inhibitor, JNJ1935,
was also used to increase HIF protein levels (33). Hypercap-
nia decreased JNJ1935-induced HIF-1� protein stabilization
(Fig. 2D).

To develop our understanding of the hypercapnic suppres-
sion of HIF, we attempted to titrate the level of CO2 required to
destabilize HIF protein. HIF-1� protein levels induced by
JNJ1935 were always suppressed by 10% CO2 but were more
variable at 7.5% CO2 (Fig. 2D). This indicates a switch-like con-
trol mechanism where the hypercapnic suppression of HIF
occurs above a level of 7.5% CO2. Consistent with our in vivo
studies, HIF-1� protein levels were unaffected by changes in
CO2 tension (Fig. 2E). Thus, hypercapnia suppresses labile ele-
ments of the HIF pathway (HIF-1� and HIF-2� protein) but not
ubiquitously expressed stable subunits (HIF-1� protein) (34).
Next, a firefly luciferase reporter was used to measure the effect
of CO2 on HIF-dependent transcriptional activity. In agree-
ment with the data reported above, hypercapnia suppressed
HIF-dependent trans-activation (Fig. 2F). In summary, in vitro
experiments support the observation that hypercapnia sup-
presses the HIF pathway. The suppression of HIF-1/2� protein

FIGURE 1. Hypercapnia suppresses the HIF pathway in vivo. A, circulating
serum EPO levels in mice exposed to room air (0.04% CO2, 21% O2) or hyper-
capnia (10% CO2, 21% O2) for 6 h. Data are presented as percentage EPO
change relative to normocapnic mice (n � 7 for all groups except 0.04%
CO2/DMOG, which is n � 6). Statistical significance was determined by t test.
B, representative Western blot and quantitative densitometric analysis for
liver HIF-2� protein normalized to liver �-actin (n � 6) in mice treated with
DMOG in the presence and absence of hypercapnia. Statistical comparison
was made using by one-way ANOVA with Tukey’s post test (***, p ltequ] 0.001;
**, p � 0.01 for the comparisons indicated by brackets). All data are presented
as mean � S.E. The Western blotting images displayed above originate from
contiguous gels. Samples were run in a different order to the way they are
presented above, as indicated by the white space. A represents data from
experiment A and B mice, whereas B represents data from experiment A mice.
MW, molecular weight.
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by pathophysiologically relevant levels of CO2 was consistently
recorded across multiple cell types.

Hypercapnia Does Not Affect Canonical HIF Degradation—
To provide mechanistic insights into hypercapnic suppression
of HIF signaling, we initially examined whether CO2 modulates
HIF-1/2� mRNA. Hypercapnia did not decrease mRNA for
either gene (Figs. 3, A and B). Therefore, hypercapnia likely
exerts its suppressive influence on HIF-1/2� at a post-tran-
scriptional level. The major mechanism known to regulate
HIF-� protein levels is the canonical O2-dependent HIF deg-

radation pathway (35). Because CO2 is a product of the HIF
hydroxylation reaction, we considered the possibility that
HIF hydroxylation could be increased by hypercapnia. How-
ever, the hydroxylated form of HIF-1� was suppressed rather
than enhanced by elevated CO2 (Fig. 3C), suggesting that this
is not the means by which hypercapnia destabilizes HIF pro-
tein. We also hypothesized that hypercapnia might increase
proteasomal degradation of HIF. Nevertheless, in the pres-
ence of a proteasomal inhibitor, hypercapnia still suppressed
both hydroxylated and total HIF-1� protein levels (Fig. 3C).

FIGURE 2. Hypercapnia suppresses the HIF pathway in vitro. A, representative HEK 293 whole cell lysate HIF-2� protein immunoblots and densitometry
normalized to �-actin from cells treated with or without DMOG (1 mM) and exposed to normocapnia or hypercapnia for 4 h (n � 6). B, representative HEK 293
HIF-1� protein immunoblots and densitometry normalized to �-actin from cells treated with or without DMOG (1 mM) and exposed to normocapnia or
hypercapnia for 4 h (n � 3). C, HIF-1� and �-actin immunoblot from HEK 293 whole cell lysates from cells treated with DMOG (1 mM) or DMSO vehicle control
and incubated for 4 h in normocapnia (5% CO2) or various degrees of hypercapnia (10%, 15%, and 20% CO2) (n � 3). D, HIF-1� and �-actin protein immunoblots
from HEK 293 whole cell lysates from cells treated with JNJ1935 (100 �M) or DMSO vehicle control and placed in either normocapnia (5% CO2) or hypercapnia
(7.5% CO2 or 10% CO2) for 4 h (n � 3). E, HIF-1� normalized to �-actin in HEK 293 whole cell lysates from cells treated with DMOG (1 mM) or DMSO vehicle control
and incubated in normocapnia (5% CO2) or hypercapnia (10% CO2) for 4 h (n � 4). F, a hypoxia response element-driven firefly luciferase construct was used
to measure the impact of CO2 tension on the activity of HIF-dependent transcriptional activity in HeLa cells. Cells were treated with DMOG (1 mM) or DMSO
vehicle control and exposed to normocapnia (5% CO2) or hypercapnia (10% CO2) for 24 h. �-Galactosidase was used as a transfection control, and all values
were normalized to �-galactosidase. -Fold changes were calculated relative to normocapnic DMSO-treated samples at 24 h (n � 4). All data are represented as
mean � S.E. Statistical significance was determined by one-way ANOVA with Tukey’s post test (*, p � 0.05; **, p � 0.01; ***, p � 0.001; NS, non-significant for
the comparisons indicated by brackets). MW, molecular weight.
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Thus, hypercapnia does not induce proteasomal degradation
of HIF.

Given the fact that HIF-1/2� subunits both contain an ODD
(13) and that both proteins are sensitive to hypercapnia, we
proposed that this region might also be responsive to CO2. To
investigate this hypothesis, experiments were conducted with
cells transfected with an ODD-GFP construct (36). We found
that hypercapnia did not suppress the DMOG-induced expres-

sion of the ODD region of HIF (Fig. 3D). Therefore, the ODD
confers O2 sensitivity, but this isolated HIF-1� domain is not
suppressed by hypercapnia. The inability of hypercapnia to
suppress the isolated ODD region further indicates that the
effect of CO2 on HIF-� expression is likely independent of the
canonical O2-dependent degradation pathway. To further test
this important point, we next evaluated whether hypercapnia
alters the levels of pVHL protein, another key component of the

FIGURE 3. Hypercapnia does not affect canonical HIF degradation. A, quantitative real-time PCR for HIF-1� mRNA from HEK 293 cells exposed to normo-
capnia (5% CO2) or hypercapnia (10% CO2) for 4 h (n � 3). B, quantitative real-time PCR for HIF-2� mRNA from HEK 293 cells exposed to normocapnia (5% CO2)
or hypercapnia (10% CO2) for 4 h (n � 3). C, representative immunoblots of HIF-1�, hydroxylated HIF-1�, and �-actin protein from HEK 293 whole cell lysates
derived from cells incubated in normocapnia (5% CO2) or hypercapnia (10% CO2) for 4 h with DMOG (1 mM) or DMSO vehicle control as well as MG132 (10 �M)
(n � 3). Densitometry is provided for hydroxylated HIF-1� normalized to �-actin. D, representative immunoblot and densitometry for ODD-GFP and �-actin in
HCT 116 cell whole cell lysates. Cells stably transfected with an ODD-GFP construct were exposed to normocapnia (5% CO2) or hypercapnia (10% CO2) for 4 h
with DMOG (1 mM) or DMSO vehicle control (n � 4). E, representative Western blot of von Hippel-Lindau and �-actin protein in HEK 293 whole cell lysates from
cells exposed to normocapnia (5% CO2) or hypercapnia (10% CO2) for 4 h with DMOG (1 mM) or DMSO vehicle control (n � 3). F, representative Western blot and
densitometry for HIF-2� relative to �-actin extracted from RCC 786-O whole cell lysates extracted from cells incubated in normocapnia (5% CO2) or hypercapnia
(10% CO2) with DMOG (1 mM) or DMSO vehicle control for 4 h (n � 3). G, representative Western blot and densitometry for HIF-2� relative to �-actin in RCC4
whole cell lysates from cells exposed to normocapnia (5% CO2) or hypercapnia (20% CO2) for 8 h (n � 4). Data are represented as mean � S.E. Statistical
significance was determined by one-way ANOVA with Tukey’s post test (*, p � 0.05; ***, p � 0.001 for the comparisons indicated by brackets). The Western
blotting images displayed above all originate from contiguous gels. The samples in C were run on the same gel in a different order to the way in which they are
presented above, as indicated by the white space. MW, molecular weight.
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canonical HIF degradation machinery. However, the expres-
sion of pVHL remained unaffected by either hypercapnia or
DMOG treatment (Fig. 3E). We subsequently examined
whether a functional pVHL pathway is required for the hyper-
capnic suppression of HIF. To address this, we used two renal
cell carcinoma cell lines that do not express functional pVHL
and consequently display endogenous HIF protein stabiliza-
tion. We found that hypercapnia suppressed DMOG-induced
HIF-2� protein in 786-O cells and endogenous HIF-2� protein
expression in RCC4 cells (Fig. 3, F and G). These results support
the concept that pVHL is not required for the hypercapnic sup-
pression of HIF. Together, these data demonstrate that the
hypercapnic suppression of HIF does not occur via the canon-
ical O2-dependent pVHL/proteasome-mediated HIF degrada-
tion pathway.

Hypercapnic Suppression of HIF Is Mediated by Lysosomal
Degradation—Hypercapnia causes cellular acidosis via the con-
version of elevated CO2 and H20 into carbonic acid, which rap-
idly disassociates into bicarbonate and H� ions. Recently, an
O2-independent mechanism of HIF protein degradation has
been described involving lysosomes (15–18). Because an acidic
environment is optimal for lysosomal functioning, we focused
on this particular non-canonical HIF degradative pathway (37).
Vacuolar H�-ATPases are ubiquitous proton pumps that are
up-regulated at reduced pHi (38). To examine the role of lyso-
somal degradation in the hypercapnic suppression of HIF, we
used bafilomycin A1 (Baf-A1). Baf-A1 is a specific inhibitor of
vacuolar H�-ATPase and, as such, prevents the vacuolar
H�-ATPase-mediated acidification of lysosomes, thus reduc-
ing autophagic degradation (39). Incubation with Baf-A1
increased both basal and DMOG-stabilized HIF-1� protein in
normocapnia in a dose-dependent manner (Fig. 4A). We sub-
sequently investigated whether an increase in lysosomal degra-
dation is responsible for the hypercapnic suppression of HIF.
Interestingly, Baf-A1 treatment prevented the hypercapnia-in-
duced decrease of HIF-1� protein (Fig. 4B). This suggests that
the hypercapnic suppression of HIF-1� protein is mediated at
least in part by lysosomal degradation and that an acidic envi-
ronment within the lysosome is required to mediate this effect.

We next focused on evaluating whether the suppressive
effects of hypercapnia on HIF-� protein could be recapitulated
by artificially reducing extracellular pH. Hypercapnia reduced
intracellular pH compared with normocapnia, as measured by
BCECF fluorescence (data not shown). Using media buffered
with different amounts of sodium bicarbonate, we found that
the stabilization of DMOG-induced HIF-1� and HIF-2� pro-
tein was affected by the change in pHe and pHi (Fig. 4, C and D;
pHi data not shown). In normocapnia, decreasing pHi with
more acidic extracellular media resulted in HIF-1� suppression
(Fig. 4D). In hypercapnia, decreasing pHi with more acidic
extracellular media also decreased HIF-1� and HIF-2� protein
stabilization (Fig. 4, C and D). In contrast, HIF-1� protein levels
were unaffected by pHe and pHi (Fig. 4E). Similarly, hypoxia-
induced HIF1/2� protein stabilization can also be suppressed
by elevated CO2 or by decreasing pHe (Fig. 4, F and G). These
data demonstrate that HIF stabilization is sensitive to changes
in pH comparable with those experienced during hypercapnia.
Taken together, these results demonstrate that it is possible to

mimic the suppressive effect of hypercapnia on HIF-� protein
by reducing pHi.

Based on these data, we hypothesize that the hypercapnic
suppression of HIF is due to non-canonical O2-independent
lysosomal degradation of HIF-� protein. Pharmacological inhi-
bition of lysosomal activity can prevent hypercapnia-depen-
dent degradation of HIF-�. Both hypercapnia exposure and
exogenously reducing pH can destabilize HIF-�. The extent to
which hypercapnia per se or the change in media pH associated
with hypercapnic acidosis are responsible for HIF-� degrada-
tion is not yet fully elucidated.

Discussion

Hypoxia and hypercapnia are often concurrent microenvi-
ronmental features at a cellular level and can also co-inciden-
tally occur in disease (3, 5, 6). However, despite the close asso-
ciation between these gases, the impact of CO2 on cellular
responses to low O2 remain poorly understood. Here we pro-
vide evidence of suppression of the hypoxic response by hyper-
capnia as a counter-regulatory mechanism reducing the activa-
tion of the HIF pathway. Using an animal model of hypercapnia,
we demonstrated that the HIF-2 target EPO is suppressed by
high CO2. Hypercapnia also impaired the accumulation of
HIF-2� protein in vivo in the presence of the hypoxia mimetic
DMOG. Hypercapnic suppression of HIF-1/2� protein was
recorded in several cell lines of diverse origin. Furthermore,
HIF-dependent transcriptional activity was diminished by
hypercapnia. Lysosomal inhibition using Baf-A1 prevented the
hypercapnic suppression of HIF-1� protein. In our in vitro
model, pHi was decreased by high CO2, and we found that
artificially decreasing pHe and pHi destabilized HIF-1/2� pro-
tein in normocapnia and hypercapnia. Thus, we propose that
the low pHi conditions present in hypercapnia may facilitate
lysosomal degradation of HIF-� protein.

The degradation of HIF protein by non-canonical, O2-inde-
pendent lysosomal chaperone-mediated autophagy is becom-
ing increasingly appreciated (15–18, 40 – 42). HIF-1� is tar-
geted for lysosomal degradation via a specific non-canonical
KFERQ-like chaperone-mediated autophagy pentapeptide at
positions 529 –533 (NEFKL) in the ODD (17). We analyzed
HIF-2� according to the criteria for identifying KFERQ-like
motifs (43) and found a similar chaperone-mediated autophagy
sequence at positions 494 – 497 (NDLKI). Although in our
experiments the isolated ODD region was not suppressed by
hypercapnia, it is possible that the full HIF-1� protein sequence
is needed to facilitate the interaction between HIF-1� and the
mediators of lysosomal degradation. The chaperone protein
HSPA8 and the lysosome membrane receptor LAMP2A have
been implicated in the lysosomal degradation of HIF-1� (17).
This process is also contingent upon Lys-63-linked ubiquitina-
tion of HIF-1� by the ubiquitin E3 ligase STUB1 (18). Lyso-
somal degradation of HIF-1� is activated by nutrient depri-
vation, and in livers extracted from starved animals, the
localization of HIF-1� in lysosomes is increased (17, 18). In the
context of our results, the acidic pH conditions extant in hyper-
capnia may deprive cells nutritionally, and they respond to this
challenge by lysosomally degrading HIF-� protein. Although
we report an association between hypercapnia and selective
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FIGURE 4. Hypercapnic suppression of HIF is mediated by lysosomal degradation. A, Western blot and densitometry for HIF-1� and �-actin in HEK 293 whole cell
lysates derived from cells exposed to normocapnia (5% CO2) for 4 h after treatment with DMOG (1 mM), bafilomycin A1 (125 and 250 nM), or DMSO vehicle control (n �
4). B, representative Western blot and densitometry for HIF-1� and �-actin protein in HEK 293 whole cell lysates derived from cells after exposure to normocapnia (5%
CO2) or hypercapnia (10% CO2) for 4 h after application of DMOG (1 mM), bafilomycin A1 (125 nM), or DMSO vehicle control as indicated (n � 4). In A and B, the data (not
normally distributed) were analyzed by Mann-Whitney test for the comparisons indicated by the brackets (*, p � 0.05; NS, non-significant). C–E, medium mixtures were
buffered with different quantities of sodium bicarbonate to alter pHe. HEK 293 cells were incubated for 4 h in normocapnia (5% CO2) or hypercapnia (10% CO2) with
DMOG (1 mM) or DMSO vehicle control with these medium mixtures. pHe values are displayed alongside the figures. These samples were measured for levels of HIF-1�
protein (C), and membranes were subsequently reblotted for HIF-2� (D) and HIF-1� protein (E). Representative immunoblots and quantitative densitometry for each
of these proteins normalized to �-actin are shown (n � 3). F and G, medium mixtures were buffered with different quantities of sodium bicarbonate to alter pHe. HEK
293 cells were incubated for 24 h in normoxic normocapnia (21% O2, 5% CO2), hypoxic normocapnia (1% O2, 5% CO2), or hypoxic hypercapnia (1% O2, 10% CO2) with
these medium mixtures. pHe values are displayed alongside the figures. Levels of HIF-1� (F) and HIF-2� (G) protein were assessed by Western blot. Representative
immunoblots and quantitative densitometry for each of these proteins normalized to �-actin are shown (n � 3). Data are represented as mean � S.E. The Western
blotting images displayed above all originate from contiguous gels. The samples in B were run on the same gel in a different order to the way in which they are
presented above, as indicated by the white space. MW, molecular weight.
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lysosomal degradation of HIF-� protein, elevated CO2 has
recently been demonstrated to inhibit macroautophagy in
macrophages (44).

A number of publications that predate the discovery of HIF
document the hypercapnic suppression of EPO levels (19 –24).
Our study implicates the CO2-mediated reduction of EPO as
being attributable to hypercapnic suppression of the HIF path-
way. Previous papers theorized that hypercapnic repression of
EPO is due to increased pulmonary ventilation and subsequent
reoxygenation at sites of EPO synthesis (19 –24). However,
Gates et al. (12) recorded only a modest increase in arterial
blood gas oxygenation upon exposure for 2 days. The results of
our animal studies are concordant with our in vitro data despite
the fact that cells are not subject to reoxygenation. Given this
evidence, we can infer that the CO2-mediated reduction in EPO
is likely due at least in part to HIF suppression rather than the
effects of systemic reoxygenation. Recent works that have
demonstrated the ability of 100% CO2 to suppress hypoxic
responses in tumors are supportive of our findings (45– 48).
Compared with room air controls, 100% CO2 was found to
reduce HIF-1� stabilization and VEGF mRNA expression in
mice implanted with a malignant human histiocytoma. 100%
CO2 also decreased tumor growth while augmenting the effec-
tiveness of chemotherapeutic doxorubicin treatment (45– 48).
Suppression of the HIF pathway by hypercapnia is of clinical
significance given the occurrence of hypoxia and its sequelae in
numerous diseases. Depending on the cause of the constitutive
hypoxia, it may be favorable to either activate or suppress HIF
(35). During inflammation and colitis, HIF exerts a protective
effect (11, 49, 50). In contrast, in cancer, intratumoral hypoxia
and genetic mutations result in the up-regulation of HIF-1�,
and the activation of HIF can promote tumorigenesis (35).
Renal cell carcinomas are prone to generating pVHL-deficient
mutations, and, as a result, HIF becomes endogenously stabi-
lized, worsening the prognosis (51). In pVHL-negative renal
cell carcinoma tumors, we can speculate that hypercapnia
could be utilized as a means of decreasing HIF stabilization
beyond the pVHL-dependent canonical HIF degradation path-
way. Conversely, the impact of modulating CO2 tension should
also be investigated in disorders where HIF promotes recovery.

In the future, the relationship between O2 and CO2 levels in
conditions such as inflammation and cancer should be tested
experimentally. Interestingly, immune cells extracted from
patients with chronic obstructive pulmonary disease have a
3-fold decreased stabilization of HIF-1� in response to hypoxic
exposure for 24 h compared with healthy individuals. However,
the contribution of hypercapnia to this defective HIF response
has not yet been examined (52). Further studies are warranted
to assess the direct associations between the levels of CO2, lys-
osomal degradation, and those of HIF protein in vivo and would
support the pathobiological relevance of our findings. The
potential for hypercapnic acidosis to induce structural changes
and subsequent denaturation of HIF-� subunits also needs to
be tested experimentally (53).

Thus, the repertoire of biological processes impacted by CO2
continues to grow (2). In this vein, our study demonstrates the
ability of physiologically relevant levels of CO2 to counter-reg-
ulate HIF activation. CO2 consistently suppresses both HIF-�

protein and HIF-dependent targets in vivo and in vitro. Hyper-
capnia appears to exert these suppressive effects at least in part
by reducing pHi, which facilitates the non-canonical lysosomal
degradation of HIF-� protein. It is likely that, in pathophysiol-
ogies where high CO2 exists, the hypercapnic suppression of
the HIF pathway is an important feature of the disease microen-
vironment. The inhibition of the adaptive hypoxic response by
CO2 represents a novel therapeutic option in diseases in which
the HIF pathway is implicated.
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