95 research outputs found
Distance statistics in quadrangulations with a boundary, or with a self-avoiding loop
We consider quadrangulations with a boundary and derive explicit expressions
for the generating functions of these maps with either a marked vertex at a
prescribed distance from the boundary, or two boundary vertices at a prescribed
mutual distance in the map. For large maps, this yields explicit formulas for
the bulk-boundary and boundary-boundary correlators in the various encountered
scaling regimes: a small boundary, a dense boundary and a critical boundary
regime. The critical boundary regime is characterized by a one-parameter family
of scaling functions interpolating between the Brownian map and the Brownian
Continuum Random Tree. We discuss the cases of both generic and self-avoiding
boundaries, which are shown to share the same universal scaling limit. We
finally address the question of the bulk-loop distance statistics in the
context of planar quadrangulations equipped with a self-avoiding loop. Here
again, a new family of scaling functions describing critical loops is
discovered.Comment: 55 pages, 14 figures, final version with minor correction
Confluence of geodesic paths and separating loops in large planar quadrangulations
We consider planar quadrangulations with three marked vertices and discuss
the geometry of triangles made of three geodesic paths joining them. We also
study the geometry of minimal separating loops, i.e. paths of minimal length
among all closed paths passing by one of the three vertices and separating the
two others in the quadrangulation. We concentrate on the universal scaling
limit of large quadrangulations, also known as the Brownian map, where pairs of
geodesic paths or minimal separating loops have common parts of non-zero
macroscopic length. This is the phenomenon of confluence, which distinguishes
the geometry of random quadrangulations from that of smooth surfaces. We
characterize the universal probability distribution for the lengths of these
common parts.Comment: 48 pages, 33 color figures. Final version, with one concluding
paragraph and one reference added, and several other small correction
Distance statistics in large toroidal maps
We compute a number of distance-dependent universal scaling functions
characterizing the distance statistics of large maps of genus one. In
particular, we obtain explicitly the probability distribution for the length of
the shortest non-contractible loop passing via a random point in the map, and
that for the distance between two random points. Our results are derived in the
context of bipartite toroidal quadrangulations, using their coding by
well-labeled 1-trees, which are maps of genus one with a single face and
appropriate integer vertex labels. Within this framework, the distributions
above are simply obtained as scaling limits of appropriate generating functions
for well-labeled 1-trees, all expressible in terms of a small number of basic
scaling functions for well-labeled plane trees.Comment: 24 pages, 9 figures, minor corrections, new added reference
Packing and Hausdorff measures of stable trees
In this paper we discuss Hausdorff and packing measures of random continuous
trees called stable trees. Stable trees form a specific class of L\'evy trees
(introduced by Le Gall and Le Jan in 1998) that contains Aldous's continuum
random tree (1991) which corresponds to the Brownian case. We provide results
for the whole stable trees and for their level sets that are the sets of points
situated at a given distance from the root. We first show that there is no
exact packing measure for levels sets. We also prove that non-Brownian stable
trees and their level sets have no exact Hausdorff measure with regularly
varying gauge function, which continues previous results from a joint work with
J-F Le Gall (2006).Comment: 40 page
A recursive approach to the O(n) model on random maps via nested loops
We consider the O(n) loop model on tetravalent maps and show how to rephrase
it into a model of bipartite maps without loops. This follows from a
combinatorial decomposition that consists in cutting the O(n) model
configurations along their loops so that each elementary piece is a map that
may have arbitrary even face degrees. In the induced statistics, these maps are
drawn according to a Boltzmann distribution whose parameters (the face weights)
are determined by a fixed point condition. In particular, we show that the
dense and dilute critical points of the O(n) model correspond to bipartite maps
with large faces (i.e. whose degree distribution has a fat tail). The
re-expression of the fixed point condition in terms of linear integral
equations allows us to explore the phase diagram of the model. In particular,
we determine this phase diagram exactly for the simplest version of the model
where the loops are "rigid". Several generalizations of the model are
discussed.Comment: 47 pages, 13 figures, final version (minor changes with v2 after
proof corrections
Trees and spatial topology change in causal dynamical triangulations
Contains fulltext :
117305.pdf (preprint version ) (Open Access
Recommended from our members
Brownian bridge asymptotics for random p-mappings
The Joyal bijection between doubly-rooted trees and mappings can be lifted to a transformation on function space which takes tree-walks to mapping-walks. Applying known results on weak convergence of random tree walks to Brownian excursion, we give a conceptually simpler rederivation of the Aldous-Pitman (1994) result on convergence of uniform random mapping walks to reflecting Brownian bridge, and extend this result to random p-mappings. © 2004 Applied Probability Trust
- …