711 research outputs found

    Impacts of Cattle Grazing Management on Sediment and Phosphorus Loads in Surface Waters

    Get PDF
    In 2001 (yr 1), 2002 (yr 2), and 2003 (yr 3), three blocks of five 1-ac paddocks were grazed by beef cows on hills at the Iowa State University Rhodes Research and Demonstration Farm to determine the effects of grazing management on phosphorus (P) and sediment runoff from pastureland. Grazing management treatments included an ungrazed control (UG), summer hay harvest with winter stockpiled grazing (HS), grazing by continuous stocking to a residual sward height of 2 in. (2C), rotational stocking to a residual sward height of 2 in. (2R), and rotational stocking to a residual sward height of 4 in (4R). At four times (late spring, mid-summer, early autumn, and early the subsequent spring) in each year, rainfall simulations were conducted at 6 sites within each paddock. Rainfall simulators dripped at a rate of 2.8 in./hr over a 5.4-ft2 area for a period of 1.5 hours. Runoff was collected and analyzed for total sediment, total P, and total soluble P. Simultaneous to each rainfall simulation, ground cover, penetration resistance, surface roughness, slope, the contents of P and moisture of the soil, sward height and forage mass were measured. Sediment flow was not affected by forage management practice. There was no difference between UG, HS, 4R in the amount of total P or soluble P lost in runoff, but greater amounts of total and soluble P were lost from 2C and 2R than from the other management practices (P\u3c0.05). A greater amount of sediment was lost from the pastures during the late spring period than during other parts of the year (P\u3c0.05). Losses of sediment, total P, and soluble P from pastures can be controlled by suitable grazing management practices

    Runaway evaporation for optically dressed atoms

    Get PDF
    Forced evaporative cooling in a far-off-resonance optical dipole trap is proved to be an efficient method to produce fermionic- or bosonic-degenerated gases. However in most of the experiences, the reduction of the potential height occurs with a diminution of the collision elastic rate. Taking advantage of a long-living excited state, like in two-electron atoms, I propose a new scheme, based on an optical knife, where the forced evaporation can be driven independently of the trap confinement. In this context, the runaway regime might be achieved leading to a substantial improvement of the cooling efficiency. The comparison with the different methods for forced evaporation is discussed in the presence or not of three-body recombination losses

    Identification and validation of genetic variants predictive of gait in standardbred horses

    Get PDF
    Several horse breeds have been specifically selected for the ability to exhibit alternative patterns of locomotion, or gaits. A premature stop codon in the gene DMRT3 is permissive for “gaitedness” across breeds. However, this mutation is nearly fixed in both American Standardbred trotters and pacers, which perform a diagonal and lateral gait, respectively, during harness racing. This suggests that modifying alleles must influence the preferred gait at racing speeds in these populations. A genome-wide association analysis for the ability to pace was performed in 542 Standardbred horses (n = 176 pacers, n = 366 trotters) with genotype data imputed to ~74,000 single nucleotide polymorphisms (SNPs). Nineteen SNPs on nine chromosomes (ECA1, 2, 6, 9, 17, 19, 23, 25, 31) reached genome-wide significance (p < 1.44 x 10−6). Variant discovery in regions of interest was carried out via whole-genome sequencing. A set of 303 variants from 22 chromosomes with putative modifying effects on gait was genotyped in 659 Standardbreds (n = 231 pacers, n = 428 trotters) using a high-throughput assay. Random forest classification analysis resulted in an out-of-box error rate of 0.61%. A conditional inference tree algorithm containing seven SNPs predicted status as a pacer or trotter with 99.1% accuracy and subsequently performed with 99.4% accuracy in an independently sampled population of 166 Standardbreds (n = 83 pacers, n = 83 trotters). This highly accurate algorithm could be used by owners/trainers to identify Standardbred horses with the potential to race as pacers or as trotters, according to the genotype identified, prior to initiating training and would enable fine-tuning of breeding programs with designed matings. Additional work is needed to determine both the algorithm’s utility in other gaited breeds and whether any of the predictive SNPs play a physiologically functional role in the tendency to pace or tag true functional alleles

    Livestock grazing and vegetative filter strip buffer effects on runoff sediment, nitrate, and phosphorus losses

    Get PDF
    Livestock grazing in the Midwestern United States can result in significant levels of runoff sediment and nutrient losses to surface water resources. Some of these contaminants can increase stream eutrophication and are suspected of contributing to hypoxic conditions in the Gulf of Mexico. This research quantified effects of livestock grazing management practices and vegetative filter strip buffers on runoff depth and mass losses of total solids, nitrate-nitrogen (NO3-N), and ortho-phosphorus (PO4-P) under natural hydrologic conditions. Runoff data were collected from 12 rainfall events during 2001 to 2003 at an Iowa State University research farm in central Iowa, United States. Three vegetative buffers (paddock area:vegetative buffer area ratios of 1:0.2, 1:0.1, and 1:0 no buffer [control]) and three grazing management practices (continuous, rotational, and no grazing [control]) comprised nine treatment combinations (vegetative buffer ratio/grazing management practice) replicated in three 1.35 ha (3.34 ac) plot areas. The total 4.05 ha (10.02 ac) study area also included nine 0.4 ha (1.0 ac) paddocks and 27 vegetative buffer runoff collection units distributed in a randomized complete block design. The study site was established on uneven terrain with a maximum of 15% slopes and consisted of approximately 100% cool-season smooth bromegrass. Average paddock and vegetative buffer plant tiller densities estimated during the 2003 project season were approximately 62 million and 93 million tillers ha−1 (153 million and 230 million tillers ac−1), respectively. Runoff sample collection pipe leakage discovered and corrected during 2001 possibly reduced runoff depth and affected runoff contaminant mass losses data values. Consequently, 2001 runoff analysis results were limited to treatment comparisons within the 2001 season and were not compared with 2002 and 2003 data. Analysis results from 2001 showed no significant differences in average losses of runoff, total solids, NO3-N, and PO4-P among the nine vegetative buffer/grazing practice treatment combinations. Results from 2002 indicated significantly higher losses of runoff and total solids from 1:0 no buffer/rotational grazing and 1:0 no buffer/continuous grazing treatment combination plots, respectively, compared among other 2002 season treatment combinations. The 2003 results showed significantly higher runoff and total solids losses from 1:0 no buffer/no grazing treatment combination plots compared among all 2003 treatment combinations and from 1:0.1 vegetative buffer/no grazing treatment combination plots compared among all 2003 treatment combinations and with respective 2002 treatment combinations. However, the 2003 results indicated effective vegetative buffer performance with significantly lower runoff, total solids, and NO3-N losses from the larger 1:0.2 buffer area compared among the smaller 1:0.1 buffer area and 1:0 no buffer treatment combinations. The 2003 results also indicated a highly significant increase in losses of NO3-N from 1:0.1 buffer/no grazing treatment combination plots compared among other 2003 season treatment combinations and with respective 2002 treatment combinations. Overall results from this study suggest a shift from significantly higher 2002 season plot losses of continuous and rotational grazing treatment combinations to significantly higher 2003 season losses of no grazing treatment combinations. We speculate this shift to significantly higher runoff and contaminant losses from no grazing treatment combination plots during 2003 reflects the variability inherent to a complex and dynamic soil-water environment of livestock grazing areas. However, we also hypothesize the environmental conditions that largely consisted of a dense perennial cool-season grass type, high-relief landscape, and relatively high total rainfall depth may not necessarily include livestock grazing activities

    Canine NAPEPLD-associated models of human myelin disorders

    Get PDF
    Canine leukoencephalomyelopathy (LEMP) is a juvenile-onset neurodegenerative disorder of the CNS white matter currently described in Rottweiler and Leonberger dogs. Genome-wide association study (GWAS) allowed us to map LEMP in a Leonberger cohort to dog chromosome 18. Subsequent whole genome re-sequencing of a Leonberger case enabled the identification of a single private homozygous non-synonymous missense variant located in the highly conserved metallo-beta-lactamase domain of the N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD) gene, encoding an enzyme of the endocannabinoid system. We then sequenced this gene in LEMP-affected Rottweilers and identified a different frameshift variant, which is predicted to replace the C-terminal metallo-beta-lactamase domain of the wild type protein. Haplotype analysis of SNP array genotypes revealed that the frameshift variant was present in diverse haplotypes in Rottweilers, and also in Great Danes, indicating an old origin of this second NAPEPLD variant. The identification of different NAPEPLD variants in dog breeds affected by leukoencephalopathies with heterogeneous pathological features, implicates the NAPEPLD enzyme as important in myelin homeostasis, and suggests a novel candidate gene for myelination disorders in people

    Greatlakean Substage: A replacement for Valderan Substage in the Lake Michigan basin

    Full text link
    New evidence from recent field and seismic investigations in the Lake Michigan basin and in the type areas of the Valders, Two Creeks and Two Rivers deposits necessitates revision of late-glacial ice-front positions, rock- and time-stratigraphic nomenclature and climatic interpretations and deglaciation patterns for the period ca. 14,000-7,000 radiocarbon years B.P. The previously reported and long accepted pattern of deglaciation for the Lake Michigan basin started with a regular retreat from the Lake Border Morainic System, with a minor oscillation marked by the Port Huron moraine(s) and then an extensive Twocreekan deglaciation followed by a major (320 km) post-Twocreekan advance (Valders). However, we now record a major retreat between the times of the Lake Border and Port Huron moraines, followed by a gradual retreat from the Port Huron limit and interrupted by a minor standstill (deposition of Manitowoc Till), a retreat (Twocreekan) and a readvance (Two Rivers Till). No Woodfordian or younger readvance was as extensive as had been the preceding one. This sequence argues for a normal, climatically controlled, progressive deglaciation rather than one interrupted by a major post-Twocreekan (formerly Valderan) surge. This revision appears finally to harmonize the geologic evidence and the palynological record for the Great Lakes region. Our investigations show that Valders Till from which the Valderan Substage was named is late-Woodfordian in age. We propose the term "Greatlakean" as a replacement for the now misleading time-stratigraphic term "Valderan". The type section and the definition of the upper and lower boundaries of the Greatlakean Substage remain the same as those originally proposed for the Valderan Substage but the name is changed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21685/1/0000075.pd

    Numerical modeling of collisional dynamics of Sr in an optical dipole trap

    Get PDF
    We describe a model of inelastic and elastic collisional dynamics of atoms in an optical dipole trap that utilizes numerical evaluation of statistical mechanical quantities and numerical solution of equations for the evolution of number and temperature of trapped atoms. It can be used for traps that possess little spatial symmetry and when the ratio of trap depth to sample temperature is relatively small. We compare simulation results with experiments on Sr88 and Sr84, which have well-characterized collisional properties

    11^{11}B NMR study of pure and lightly carbon doped MgB2_2 superconductors

    Full text link
    We report a 11^{11}B NMR line shape and spin-lattice relaxation rate (1/(T1T)1/(T_1T)) study of pure and lightly carbon doped MgB2x_{2-x}Cx_{x} for x=0x=0, 0.02, and 0.04, in the vortex state and in magnetic field of 23.5 kOe. We show that while pure MgB2_2 exhibits the magnetic field distribution from superposition of the normal and the Abrikosov state, slight replacement of boron with carbon unveils the magnetic field distribution of the pure Abrikosov state. This indicates a considerable increase of Hc2cH_{c2}^c with carbon doping with respect to pure MgB2_2. The spin-lattice relaxation rate 1/(T1T)1/(T_1T) demonstrates clearly the presence of a coherence peak right below TcT_c in pure MgB2_2, followed by a typical BCS decrease on cooling. However, at temperatures lower than 10\approx 10K strong deviation from the BCS behavior is observed, probably from residual contribution of the vortex dynamics. In the carbon doped systems both the coherence peak and the BCS temperature dependence of 1/(T1T)1/(T_1T) weaken, an effect attributed to the gradual shrinking of the σ\sigma hole cylinders of the Fermi surface with electron doping.Comment: 8 pages, 6 figures, submitted to Phys. Rev.
    corecore