72 research outputs found

    Mathematical Structure of Magnons in Quantum Ferromagnets

    Get PDF
    We provide the mathematical structure and a simple, transparent and rigorous derivation of the magnons as elementary quasi-particle excitations at low temperatures and in the infinite spin limit for a large class of Heisenberg ferromagnets. The magnon canonical variables are obtained as fluctuation operators in the infinite spin limit. Their quantum character is governed by the size of the magnetization

    Fluctuation Operators and Spontaneous Symmetry Breaking

    Full text link
    We develop an alternative approach to this field, which was to a large extent developed by Verbeure et al. It is meant to complement their approach, which is largely based on a non-commutative central limit theorem and coordinate space estimates. In contrast to that we deal directly with the limits of ll-point truncated correlation functions and show that they typically vanish for l3l\geq 3 provided that the respective scaling exponents of the fluctuation observables are appropriately chosen. This direct approach is greatly simplified by the introduction of a smooth version of spatial averaging, which has a much nicer scaling behavior and the systematic developement of Fourier space and energy-momentum spectral methods. We both analyze the regime of normal fluctuations, the various regimes of poor clustering and the case of spontaneous symmetry breaking or Goldstone phenomenon.Comment: 30 pages, Latex, a more detailed discussion in section 7 as to possible scaling behavior of l-point function

    Implementing Quantum Gates using the Ferromagnetic Spin-J XXZ Chain with Kink Boundary Conditions

    Get PDF
    We demonstrate an implementation scheme for constructing quantum gates using unitary evolutions of the one-dimensional spin-J ferromagnetic XXZ chain. We present numerical results based on simulations of the chain using the time-dependent DMRG method and techniques from optimal control theory. Using only a few control parameters, we find that it is possible to implement one- and two-qubit gates on a system of spin-3/2 XXZ chains, such as Not, Hadamard, Pi-8, Phase, and C-Not, with fidelity levels exceeding 99%.Comment: Updated Acknowledgement

    Non-Extensive Bose-Einstein Condensation Model

    Get PDF
    The imperfect Boson gas supplemented with a gentle repulsive interaction is completely solved. In particular it is proved that it has non-extensive Bose-Einstein condensation, i.e., there is condensation without macroscopic occupation of the ground state (k=0) level

    Transport of interface states in the Heisenberg chain

    Get PDF
    We demonstrate the transport of interface states in the one-dimensional ferromagnetic Heisenberg model by a time dependent magnetic field. Our analysis is based on the standard Adiabatic Theorem. This is supplemented by a numerical analysis via the recently developed time dependent DMRG method, where we calculate the adiabatic constant as a function of the strength of the magnetic field and the anisotropy of the interaction.Comment: minor revision, final version; 13 pages, 4 figure

    Module networks revisited: computational assessment and prioritization of model predictions

    Full text link
    The solution of high-dimensional inference and prediction problems in computational biology is almost always a compromise between mathematical theory and practical constraints such as limited computational resources. As time progresses, computational power increases but well-established inference methods often remain locked in their initial suboptimal solution. We revisit the approach of Segal et al. (2003) to infer regulatory modules and their condition-specific regulators from gene expression data. In contrast to their direct optimization-based solution we use a more representative centroid-like solution extracted from an ensemble of possible statistical models to explain the data. The ensemble method automatically selects a subset of most informative genes and builds a quantitatively better model for them. Genes which cluster together in the majority of models produce functionally more coherent modules. Regulators which are consistently assigned to a module are more often supported by literature, but a single model always contains many regulator assignments not supported by the ensemble. Reliably detecting condition-specific or combinatorial regulation is particularly hard in a single optimum but can be achieved using ensemble averaging.Comment: 8 pages REVTeX, 6 figure

    The Canonical Perfect Bose Gas in Casimir Boxes

    Full text link
    We study the problem of Bose-Einstein condensation in the perfect Bose gas in the canonical ensemble, in anisotropically dilated rectangular parallelpipeds (Casimir boxes). We prove that in the canonical ensemble for these anisotropic boxes there is the same type of generalized Bose-Einstein condensation as in the grand-canonical ensemble for the equivalent geometry. However the amount of condensate in the individual states is different in some cases and so are the fluctuations.Comment: 23 page

    Prediction of a gene regulatory network linked to prostate cancer from gene expression, microRNA and clinical data

    Get PDF
    Motivation: Cancer is a complex disease, triggered by mutations in multiple genes and pathways. There is a growing interest in the application of systems biology approaches to analyze various types of cancer-related data to understand the overwhelming complexity of changes induced by the disease
    corecore