33 research outputs found

    Highly specific unnatural base pair systems as a third base pair for PCR amplification

    Get PDF
    Toward the expansion of the genetic alphabet of DNA, we present highly efficient unnatural base pair systems as an artificial third base pair for PCR. Hydrophobic unnatural base pair systems between 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) were fine-tuned for efficient PCR, by assessing the amplification efficiency and fidelity using different polymerases and template sequence contexts and modified Px bases. Then, we found that some modifications of the Px base reduced the misincorporation rate of the unnatural base substrates opposite the natural bases in templates without reducing the Ds–Px pairing selectivity. Under optimized conditions using Deep Vent DNA polymerase, the misincorporation rate was extremely low (0.005%/bp/replication), which is close to that of the natural base mispairings by the polymerase. DNA fragments with different sequence contexts were amplified ∼1010-fold by 40 cycles of PCR, and the selectivity of the Ds–Px pairing was >99.9%/replication, except for 99.77%/replication for unfavorable purine-Ds-purine motifs. Furthermore, >97% of the Ds–Px pair in DNA survived in the 1028-fold amplified products after 100-cycle PCR (10 cycles repeated 10 times). This highly specific Ds–Px pair system provides a framework for new biotechnology

    An unnatural base pair system for efficient PCR amplification and functionalization of DNA molecules

    Get PDF
    Toward the expansion of the genetic alphabet, we present an unnatural base pair system for efficient PCR amplification, enabling the site-specific incorporation of extra functional components into DNA. This system can be applied to conventional PCR protocols employing DNA templates containing unnatural bases, natural and unnatural base triphosphates, and a 3′→5′ exonuclease-proficient DNA polymerase. For highly faithful and efficient PCR amplification involving the unnatural base pairing, we identified the natural-base sequences surrounding the unnatural bases in DNA templates by an in vitro selection technique, using a DNA library containing the unnatural base. The system facilitates the site-specific incorporation of a variety of modified unnatural bases, linked with functional groups of interest, into amplified DNA. DNA fragments (0.15 amol) containing the unnatural base pair can be amplified 107-fold by 30 cycles of PCR, with <1% total mutation rate of the unnatural base pair site. Using the system, we demonstrated efficient PCR amplification and functionalization of DNA fragments for the extremely sensitive detection of zeptomol-scale target DNA molecules from mixtures with excess amounts (pmol scale) of foreign DNA species. This unnatural base pair system will be applicable to a wide range of DNA/RNA-based technologies

    Fluorescent probing for RNA molecules by an unnatural base-pair system

    Get PDF
    Fluorescent labeling of nucleic acids is widely used in basic research and medical applications. We describe the efficient site-specific incorporation of a fluorescent base analog, 2-amino-6-(2-thienyl)purine (s), into RNA by transcription mediated by an unnatural base pair between s and pyrrole-2-carbaldehyde (Pa). The ribonucleoside 5′-triphosphate of s was site-specifically incorporated into RNA, by T7 RNA polymerase, opposite Pa in DNA templates. The fluorescent intensity of s in RNA molecules changes according to the structural environment. The site-specific s labeling of RNA hairpins and tRNA molecules provided characteristic fluorescent profiles, depending on the labeling sites, temperature and Mg2+ concentration. The Pa-containing DNA templates can be amplified by PCR using 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds), another pairing partner of Pa. This site-specific fluorescent probing by the unnatural pair system including the s-Pa and Ds-Pa pairs provides a powerful tool for studying the dynamics of the local structural features of 3D RNA molecules and their intra- and intermolecular interactions

    PCR Amplification and Transcription for Site-Specific Labeling of Large RNA Molecules by a Two-Unnatural-Base-Pair System

    Get PDF
    For the site-specific labeling and modification of RNA by genetic alphabet expansion, we developed a PCR and transcription system using two hydrophobic unnatural base pairs: 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and 2-nitro-4-propynylpyrrole (Px) as a third pair for PCR amplification and Ds and pyrrole-2-carbaldehyde (Pa) for the incorporation of functional components as modified Pa bases into RNA by T7 transcription. To prepare Ds-containing DNA templates with long chains, the Ds-Px pair was utilized in a fusion PCR method, by which we demonstrated the synthesis of 282-bp DNA templates containing Ds at specific positions. Using these Ds-containing DNA templates and a biotin-linked Pa substrate (Biotin-PaTP) as a modified Pa base, 260-mer RNA transcripts containing Biotin-Pa at a specific position were generated by T7 RNA polymerase. This two-unnatural-base-pair system, combining the Ds-Px and Ds-Pa pairs with modified Pa substrates, provides a powerful tool for the site-specific labeling and modification of desired positions in large RNA molecules

    Architecture of high-affinity unnatural-base DNA aptamers toward pharmaceutical applications

    Get PDF
    We present a remodeling method for high-affinity unnatural-base DNA aptamers to augment their thermal stability and nuclease resistance, for use as drug candidates targeting specific proteins. Introducing a unique mini-hairpin DNA provides robust stability to unnatural-base DNA aptamers generated by SELEX using genetic alphabet expansion, without reducing their high affinity. By this method, \u3e80% of the remodeled DNA aptamer targeting interferon-γ (KD of 33 pM) survived in human serum at 37 °C after 3 days under our experimental conditions, and sustainably inhibited the biological activity of interferon-γ

    Strukturelle Studie zur Erweiterung des genetischen Codes durch ein artifizielles Nucleobasenpaar

    No full text
    Hydrophobe artifizielle Basenpaare, die keine Wasserstoffbrücken bilden, sind die derzeit vielversprechendsten Kandidaten zur Erweiterung des genetischen Alphabets. Die erfolgreichsten nichtnatürlichen Nukleobasen weisen wenig Ähnlichkeit untereinander und mit ihren natürlichen Gegenstücken auf. Daher ist es rätselhaft, wie sie von DNA‐Polymerasen prozessiert werden, den Enzymen, die in der Evolution eigentlich daraufhin optimiert wurden, effizient die natürlichen Bausteine zu prozessieren. Hier werden die strukturellen Hintergründe des enzymatischen Einbaus von dDs‐dPx, einem der vielversprechendsten hydrophoben nichtnatürlichen Basenpaare, in einen DNA‐Strang untersucht. Dazu wurde eine Kristallstruktur der KlenTaq‐DNA‐Polymerase mit einem modifizierten Templat/Primer‐Duplex und dem gebundenen nichtnatürlichen Triphosphat gelöst. Der ternäre Komplex zeigt, dass das artifizielle Paar genau wie ein natürliches Basenpaar eine planare Struktur annimmt, und lässt zudem Besonderheiten erkennen, die die immer noch schlechtere Einbaueffizienz bei der Prozessierung von nichtnatürlichen Substraten erklären könnten.publishe
    corecore