28 research outputs found

    High throughput mutagenesis for identification of residues regulating human prostacyclin (hIP) receptor

    Get PDF
    The human prostacyclin receptor (hIP receptor) is a seven-transmembrane G protein-coupled receptor (GPCR) that plays a critical role in vascular smooth muscle relaxation and platelet aggregation. hIP receptor dysfunction has been implicated in numerous cardiovascular abnormalities, including myocardial infarction, hypertension, thrombosis and atherosclerosis. Genomic sequencing has discovered several genetic variations in the PTGIR gene coding for hIP receptor, however, its structure-function relationship has not been sufficiently explored. Here we set out to investigate the applicability of high throughput random mutagenesis to study the structure-function relationship of hIP receptor. While chemical mutagenesis was not suitable to generate a mutagenesis library with sufficient coverage, our data demonstrate error-prone PCR (epPCR) mediated mutagenesis as a valuable method for the unbiased screening of residues regulating hIP receptor function and expression. Here we describe the generation and functional characterization of an epPCR derived mutagenesis library compromising >4000 mutants of the hIP receptor. We introduce next generation sequencing as a useful tool to validate the quality of mutagenesis libraries by providing information about the coverage, mutation rate and mutational bias. We identified 18 mutants of the hIP receptor that were expressed at the cell surface, but demonstrated impaired receptor function. A total of 38 non-synonymous mutations were identified within the coding region of the hIP receptor, mapping to 36 distinct residues, including several mutations previously reported to affect the signaling of the hIP receptor. Thus, our data demonstrates epPCR mediated random mutagenesis as a valuable and practical method to study the structurefunction relationship of GPCRs. © 2014 Bill et al

    The adjuvant AlhydroGel elicits higher antibody titres than AddaVax when combined with HIV-1 subtype C gp140 from CAP256.

    No full text
    With the HIV-1 epidemic in southern Africa still rising, a prophylactic vaccine against the region's most prolific subtype (subtype C) would be a significant step forward. In this paper we report on the effect of 2 different adjuvants, AddaVax and AlhydroGel, formulated with HIV-1 subtype C gp140, on the development of binding and neutralising antibody titres in rabbits. AddaVax is a squalene-based oil-in-water nano-emulsion (similar to MF59) which can enhance both cellular and humoral immune responses, whilst AlhydroGel (aluminium hydroxide gel) mainly drives a Th2 response. The gp140 gene tested was derived from the superinfecting virus (SU) from participant CAP256 in the CAPRISA 002 Acute infection cohort. The furin cleavage site of the Env protein was replaced with a flexible linker and an I559P mutation introduced. Lectin affinity purified soluble Env protein was mainly trimeric as judged by molecular weight using BN-PAGE and contained intact broadly neutralising epitopes for the V3-glycan supersite (monoclonal antibodies PGT128 and PGT135), the CD4 binding site (VRC01) and the V2-glycan (PG9) but not for the trimer-specific monoclonal antibodies PG16, PGT145 and CAP256-VRC26_08. When this soluble Env protein was tested in rabbits, AlhydroGel significantly enhanced soluble Env and V1V2 binding antibodies when compared to AddaVax. Finally, AlhydroGel resulted in significantly higher neutralization titres for a subtype C Tier 1A virus (MW965.26) and increased neutralization breadth to Tier 1A and 1B viruses. However, no autologous Tier 2 neutralisation was observed. These data suggest that adjuvant selection is critical for developing a successful vaccine and AlhydroGel should be further investigated. Additional purification of trimeric native-like CAP256 Env and/or priming with DNA or MVA might enhance the induction of neutralizing antibodies and possible Tier 2 HIV-1 neutralisation

    The development of automated patch clamp assays for canonical transient receptor potential channels TRPC3, 6, and 7

    No full text
    The canonical transient receptor potential channel subfamily (TRPC3, TRPC6, and TRPC7) contains Ca2+ permeable non-selective cation channels that are widely expressed in a variety of tissues. There is increasing evidence implicating TRPC channels, particularly TRPC3 and 6, in physiological and pathophysiological processes, eliciting interest in these channels as novel drug targets. Electrophysiology remains a benchmark technique for measuring ion channel function and accurately determining the pharmacological effects of compounds. In this report we describe the development of TRPC inhibitor assays on 2 automated planar patch clamp platforms - the IonWorks® Quattro™ and QPatch® systems. To enable activation of TRPC channels by carbachol, Chinese Hamster Ovary-K1 cells stably expressing the muscarinic M3 receptor were transduced with human TRPC3, TRPC6, or TRPC7 using BacMam viruses. TRPC3, 6, and 7 currents could be recorded on both platforms. However, the design of each platform limits which assay parameters can be recorded. Due to its continuous recording capabilities, the QPatch can capture both the activation and decay of the response. However, the transient nature of TRPC channels, the inability to reactivate and the large variation in peak currents limits the ability to develop assays for compound screening. The IonWorks Quattro, due to its discontinuous sampling, did not fully capture the peak of TRPC currents. However, due to the ability of the IonWorks Quattro to record from 64 cells per well, the variation from well to well was sufficiently reduced allowing for the development of medium-throughput screening assays. © Copyright 2014, Mary Ann Liebert, Inc. 2014

    Catalysis engineering on three levels

    No full text
    The relevance of levels in space and time for chemical engineering are discussed. Catalysis Engineering is introduced as an emerging new discipline. In Catalysis Engineering three levels can be distinguished: the microlevel focusing on molecules and catalytic sites, the mesolevel focusing on the catalyst particle and the catalytic reactor, and the macrolevel considering the process as an integrated entity. On the level of particle and reactor fascinating developments are visible in the field of structuring of the space. A good example is the monolithic reactor. With the hydrogenation of alpha-methylstyrene as an example, it will be shown that structured reactors allow decoupling of hydrodynamics and chemical kinetics. This implies an extra degree of freedom. From a chemical engineering point of view the intrinsic scaleability of these reactors is intriguing. A case study on nitrous oxide abatement exemplifies the three-level catalysis engineering approach.Applied Science

    Ubiquitin ligase TRIM3 controls hippocampal plasticity and learning by regulating synaptic γ-actin levels

    No full text
    Synaptic plasticity requires remodeling of the actin cytoskeleton. Although two actin isoforms, β- and γ-actin, are expressed in dendritic spines, the specific contribution of γ-actin in the expression of synaptic plasticity is unknown. We show that synaptic γ-actin levels are regulated by the E3 ubiquitin ligase TRIM3. TRIM3 protein and Actg1 transcript are colocalized in messenger ribonucleoprotein granules responsible for the dendritic targeting of messenger RNAs. TRIM3 polyubiquitylates γ-actin, most likely cotranslationally at synaptic sites. Trim3(-/-) mice consequently have increased levels of γ-actin at hippocampal synapses, resulting in higher spine densities, increased long-term potentiation, and enhanced short-term contextual fear memory consolidation. Interestingly, hippocampal deletion of Actg1 caused an increase in long-term fear memory. Collectively, our findings suggest that temporal control of γ-actin levels by TRIM3 is required to regulate the timing of hippocampal plasticity. We propose a model in which TRIM3 regulates synaptic γ-actin turnover and actin filament stability and thus forms a transient inhibitory constraint on the expression of hippocampal synaptic plasticity

    MyosinV controls PTEN function and neuronal cell size

    No full text
    The tumour suppressor PTEN can inhibit proliferation and migration as well as control cell growth in different cell types1. PTEN functions predominately as a lipid phsophatase, converting PI(3,4,5)P(3) to PI(4,5)P(2), thereby antagonizing PI3K (Phosphoinositide 3-kinase) and its established downstream effector pathways2. However, much is unclear concerning the mechanisms that regulate PTEN movement to the cell membrane necessary for PTEN’s activity towards PI(3,4,5)P(3)3-5. Here we show a requirement for functional motor proteins in the control of PI3K signalling, involving a previously unknown association between PTEN and MyosinV. FRET measurements revealed that PTEN interacts directly with MyosinV, dependent on PTEN phosphorylation mediated by CK2 and/or GSK3. Inactivation of MyosinV-transport function in neurons increased cell size, which – in line with known attributes of PTEN-loss6, 7 - required PI3K and mTor. Our data demonstrate a myosin-based transport mechanism regulating PTEN function, providing new insights into the signalling networks regulating cell growth
    corecore