48 research outputs found

    Seasonal variations in monoterpene profiles and ecophysiological traits in Mediterranean pine species of group ‘halepensis’

    Get PDF
    Foliar and cortical terpene profile, and needle gas exchange and water potential of P. halepensis, P. brutia and P. eldarica were compared over three consecutive seasons (1996-1998) in an experimental plantation nearby Firenze (Italy). Terpene percentages in mature tissue (cortex and needle) did not change in response to water stress during summer period and remained stable through seasons and years. Terpene profiles were not affected by seasonal drought, and are thus valuable to characterize Mediterranean pine species of the group “halepensis”. There was a threshold-type response of maximum daily gas exchange to decreasing predawn water potential in all pines. Net photosynthesis and needle conductance were linearly related, regardless of the species

    Volatile organic compounds (VOC) as biomarkers for detection of Ceratocystis platani

    Get PDF
    AbstractCeratocystis platani causes canker stain of plane trees, and it represents a serious disease of Platanus spp. both in the United States and Europe. Current chemical or biological controls do not effectively manage C. platani, so new preventive methods need to be developed in order to limit this pathogen spreading. In this work, we have characterized the main volatile organic compounds (VOC) emitted in vitro from pure cultures of C. platani and other common pathogenic fungal species of hosts plants growing in the same ecosystems as plane trees. We found that C. platani emitted a similar blend of VOC compared with phylogenetically similar species C. populicola. In particular, C. platani was characterized by emission of isoamyl acetate and isobutyl acetate while C. populicola by ethyl acetate and isobutyl acetate, which were not released by any of the other out‐group fungal species grown on the same medium. Moreover, following a targeted approach based on the main VOC found in vitro, we have successfully validated in vivo that VOC uniquely emitted by C. platani (i.e. isobutyl acetate along with isoamyl alcohol) were released from the bark of plane trees following C. platani inoculation. Our results highlight the possibility to exploit VOC emitted specifically by C. platani as biomarkers to recognize Platanus x acerifolia plants infected by this pathogen

    Surveillance of Summer Mortality and Preparedness to Reduce the Health Impact of Heat Waves in Italy

    Get PDF
    Since 2004, the Italian Department for Civil Protection and the Ministry of Health have implemented a national program for the prevention of heat-health effects during summer, which to-date includes 34 major cities and 93% of the residents aged 65 years and over. The Italian program represents an important example of an integrated approach to prevent the impact of heat on health, comprising Heat Health Watch Warning Systems, a mortality surveillance system and prevention activities targeted to susceptible subgroups. City-specific warning systems are based on the relationship between temperature and mortality and serve as basis for the modulation of prevention measures. Local prevention activities, based on the guidelines defined by the Ministry of Health, are constructed around the infrastructures and services available. A key component of the prevention program is the identification of susceptible individuals and the active surveillance by General Practitioners, medical personnel and social workers. The mortality surveillance system enables the timely estimation of the impact of heat, and heat waves, on mortality during summer as well as to the evaluation of warning systems and prevention programs. Considering future predictions of climate change, the implementation of effective prevention programs, targeted to high risk subjects, become a priority in the public health agenda

    Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem

    Get PDF
    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the cankerresistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle

    Overview of existing heat-health warning systems in Europe

    Get PDF
    The frequency of extreme heat events, such as the summer of 2003 in Europe, and their corresponding consequences for human beings are expected to increase under a warmer climate. The joint collaboration of institutional agencies and multidisciplinary approaches is essential for a successful development of heat-health warning systems and action plans which can reduce the impacts of extreme heat on the population. The present work constitutes a state-of-the-art review of 16 European heat-health warning systems and heat-health action plans, based on the existing literature, web search (over the National Meteorological Services websites) and questionnaires. The aim of this study is to pave the way for future heat-health warning systems, such as the one currently under development in the framework of the Horizon 2020 HEAT-SHIELD project. Some aspects are highlighted among the variety of examined European warning systems. The meteorological variables that trigger the warnings should present a clear link with the impact under consideration and should be chosen depending on the purpose and target of the warnings. Setting long-term planning actions as well as pre-alert levels might prevent and reduce damages due to heat. Finally, education and communication are key elements of the success of a warning systemFinancial support for this work is provided by the HEAT-SHIELD Project (HORIZON 2020, research and innovation programme under the grant agreement 668786)

    Time-Trends in Air Pollution Impact on Health in Italy, 1990–2019: An Analysis From the Global Burden of Disease Study 2019

    Get PDF
    Objectives: We explored temporal variations in disease burden of ambient particulate matter 2.5 Όm or less in diameter (PM2.5) and ozone in Italy using estimates from the Global Burden of Disease Study 2019.Methods: We compared temporal changes and percent variations (95% Uncertainty Intervals [95% UI]) in rates of disability adjusted life years (DALYs), years of life lost, years lived with disability and mortality from 1990 to 2019, and variations in pollutant-attributable burden with those in the overall burden of each PM2.5- and ozone-related disease.Results: In 2019, 467,000 DALYs (95% UI: 371,000, 570,000) were attributable to PM2.5 and 39,600 (95% UI: 18,300, 61,500) to ozone. The crude DALY rate attributable to PM2.5 decreased by 47.9% (95% UI: 10.3, 65.4) from 1990 to 2019. For ozone, it declined by 37.0% (95% UI: 28.9, 44.5) during 1990–2010, but it increased by 44.8% (95% UI: 35.5, 56.3) during 2010–2019. Age-standardized rates declined more than crude ones.Conclusion: In Italy, the burden of ambient PM2.5 (but not of ozone) significantly decreased, even in concurrence with population ageing. Results suggest a positive impact of air quality regulations, fostering further regulatory efforts

    Relative importance of host and plant semiochemicals in the foraging behavior of Trichogramma achaeae, an egg parasitoid of Tuta absoluta

    Get PDF
    Herbivore-induced plant volatiles (HIPVs) and host sex pheromones are important semiochemicals used by natural enemies to locate prey or hosts. The egg parasitoid Trichogramma achaeae Nagaraja & Nagarkatti has recently shown potential for use as a biological control agent of Tuta absoluta (Meyrick), a key pest of tomato crops worldwide. In this study, we used olfactometer tests to examine the behavioral response of T. achaeae females to T. absoluta sex pheromone or to HIPVs produced by tomato plants infested with T. absoluta eggs or larvae. Our results showed that T. achaeae was attracted to T. absoluta sex pheromone. Parasitoids were also innately attracted to volatiles produced by tomato plants, whether uninfested or infested. However, parasitoids could not distinguish between volatiles from uninfested or T. absoluta-infested tomato plants. We characterized the headspace volatiles of tomato plants used in the olfactometer tests and found out that oviposi- tion and larval feeding by T. absoluta significantly enhanced HIPV emission. This study suggests that the sex pheromone of T. absoluta is a potential tool to manipulate the behavior of T. achaeae and improve its attraction to the tomato crop. The analysis of volatiles released by tomato plants, either infested or uninfested, coupled with the response of T. achaeae in the olfactometer tests was consistent with what was expected in terms of the foraging behavior of a generalist parasitoid. The results and implications are further discussed in the context of sustainable T. absoluta management

    Acclimation to changing light conditions of long-term shade-grown beech (Fagus sylvatica L.) seedlings of different geographic origins

    No full text
    Effects of changing light conditions on the ecophysiological condition behind survival were examined on beech from two different populations. Plants were grown in a greenhouse under simulated understorey and canopy gap light conditions. Upon exposure to high light maximum photosynthesis of shade-acclimated leaves increased followed by a reduction over several days to between high- and low-light control rates. In the reciprocal transfer, the decrease in maximum photosynthesis was rapid during the first 2–3 days and then levelled off to values comparable to low-light controls. Seedlings from Sicily (Madonie) showed generally higher maximum photosynthetic rates than those from Abetone. Leaf conductance varied in the same direction as photosynthesis in high- to low-light seedlings but to a lesser degree. Leaves grown under low light and exposed to high light experienced photoinhibition. The Abetone population was more susceptible to photoinhibitory damage than the seedlings from Sicily. Exposure to high light of shade-acclimated seedlings resulted in intermediate chlorophyll concentrations between levels of the high-light and low-light seedlings. Carotenoid concentration was unaffected by treatments. Seedlings grew more in high light, but had a lower leaf area ratio. Light-limited seedlings showed a shift in carbon allocation to foliage. Leaves formed in the new light regime maintained the same anatomy that had been developed before transfer. Seedlings from Sicily had thicker leaves than those of seedlings from Abetone. Seedlings from Abetone were found to be more susceptible to changing light conditions than seedlings from Sicily. We conclude that small forest gaps may represent a favorable environment for photosynthesis and growth of beech regeneration as a result of the limited ability of seedlings to acclimate to sudden increases in high irradiance and because of the moderate levels of light stress in small gaps
    corecore