132 research outputs found

    Identification and molecular characterization of highly divergent RNA viruses in cattle, Uganda

    Get PDF
    The risk for the emergence of novel viral zoonotic diseases in animals and humans in Uganda is high given its geographical location with high biodiversity. We aimed to identify and characterize viruses in 175 blood samples from cattle selected in Uganda using molecular approaches. We identified 8 viral species belonging to 4 families (Flaviviridae, Peribunyaviridae, Reoviridae and Rhabdoviridae) and 6 genera (Hepacivirus, Pestivirus, Orthobunya-virus, Coltivirus, Dinovernavirus and Ephemerovirus). Four viruses were highly divergent and tetantively named Zikole virus (Family: Flaviviridae), Zeboroti virus (Family: Reoviridae), Zebtine virus (Family: Rhabdoviridae) and Kokolu virus (Family: Rhabdoviridae). In addition, Bovine Hepacivirus, Obodhiang virus, Aedes pseudoscutellaris reovirus and Schmallenberg virus were identified for the first time in Ugandan cattle. We report 8 viral species belonging to 4 viral families including divergent ones in the blood of cattle in Uganda. Hence, cattle may be reservoir hosts for likely emergence of novel viruses with pathogenic potential to cause zoonotic diseases in different species with serious public health implications

    Evaluation of Clinical Variables Associated with Increased Carotid Intima-Media Thickness in Middle-Aged Hypertensive Women

    Get PDF
    It has been previously documented that carotid intima-media thickness (cIMT) is a predictor of cardiovascular disease. The aim of this study was to identify clinical parameters associated with an increased cIMT treated hypertensive women. Female patients (n = 116) with essential hypertension, aged 40–65 years, were included in this study. Vascular ultrasound was performed and the patients were divided into two groups according to the values of cIMT (< or ≥0.9 mm). Patients with greater cIMT presented significantly higher systolic blood pressure and pulse pressure. Serum HDL-cholesterol was significantly lower and CRP was significantly higher in the same group. There was a significant correlation between cIMT and age (r = 0.25, P = 0.007), systolic blood pressure (r = 0.19, P = 0.009), pulse pressure (r = 0.30, P = 0.001), and LDL-cholesterol (r = 0.19, P = 0.043). cIMT was correlated to CRP (r = 0.31, P = 0.007) and negatively correlated to HDL-cholesterol (r = 0.33, P = 0.001). In logistic regression, only HDL-cholesterol, CRP, and pulse pressure were shown to be independent variables associated to increased cIMT. In conclusion, pulse pressure, HDL-cholesterol, and CRP are variables correlated with cIMT in treated hypertensive women

    Evolutionary genetics of canine respiratory coronavirus and recent introduction into Swedish dogs

    Get PDF
    Canine respiratory coronavirus (CRCoV) has been identified as a causative agent of canine infectious respiratory disease, an upper respiratory infection affecting dogs. The epidemiology is currently opaque, with an unclear understanding of global prevalence, pathology, and genetic characteristics. In this study, Swedish privatelyowned dogs with characteristic signs of canine infectious respiratory disease (n = 88) were screened for CRCoV and 13 positive samples (14.7%, 8.4–23.7% [95% confidence interval (CI)]) were further sequenced. Sequenced Swedish CRCoV isolates were highly similar despite being isolated from dogs living in geographically distant locations and sampled across 3 years (2013–2015). This is due to a single introduction into Swedish dogs in approximately 2010, as inferred by time structured phylogeny. Unlike other CRCoVs, there was no evidence of recombination in Swedish CRCoV isolates, further supporting a single introduction. Finally, there were low levels of polymorphisms, in the spike genes. Overall, we demonstrate that there is little diversity of CRCoV which is endemic in Swedish dogs

    Risk assessment of SARS-CoV-2 in Antarctic wildlife

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This pathogen has spread rapidly across the world, causing high numbers of deaths and significant social and economic impacts. SARS-CoV-2 is a novel coronavirus with a suggested zoonotic origin with the potential for cross-species transmission among animals. Antarctica can be considered the only continent free of SARS-CoV-2. Therefore, concerns have been expressed regarding the potential human introduction of this virus to the continent through the activities of research or tourismto minimise the effects on human health, and the potential for virus transmission to Antarctic wildlife. We assess the reverse-zoonotic transmission risk to Antarcticwildlife by considering the available information on host susceptibility, dynamics of the infection inhumans, and contact interactions between humans and Antarctic wildlife. The environmental conditions in Antarctica seem to be favourable for the virus stability. Indoor spaces such as those at research stations, research vessels or tourist cruise ships could allow for more transmission among humans and depending on their movements between different locations the virus could be spread across the continent. Among Antarctic wildlife previous in silico analyses suggested that cetaceans are at greater risk of infection whereas seals and birds appear to be at a low infection risk. However, caution needed until further research is carried out and consequently, the precautionary principle should be applied. Field researchers handling animals are identified as the human group posing the highest risk of transmission to animals while tourists and other personnel pose a significant risk only when in close proximity (< 5 m) to Antarctic fauna. We highlight measures to reduce the risk as well as identify of knowledge gaps related to this issue.Fil: Barbosa, A.. Museo Nacional de Ciencias Naturales; España. Consejo Superior de Investigaciones Científicas; EspañaFil: Varsani, Arvind. Arizona State University; Estados Unidos. University of Cape Town; SudáfricaFil: Morandini, Virginia. State University of Oregon; Estados UnidosFil: Grimaldi, Wray. No especifíca;Fil: Vanstreels, Ralph E.T.. Institute Research And Rehabilitation Marine Animals; BrasilFil: Diaz, Julia Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Centro de Estudios Parasitológicos y de Vectores. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Centro de Estudios Parasitológicos y de Vectores; ArgentinaFil: Boulinier, Thierry. Université Montpellier II; Francia. Centre National de la Recherche Scientifique; FranciaFil: Dewar, Meagan. Federation University; AustraliaFil: González Acuña, Daniel. Universidad de Concepción; ChileFil: Gray, Rachael. University Of Western Sydney.; AustraliaFil: McMahon, Clive R.. Sydney Institute Of Marine Science; AustraliaFil: Miller, Gary. University of Western Australia; AustraliaFil: Power, Michelle. Macquarie University; AustraliaFil: Gamble, Amandine. University of California; Estados UnidosFil: Wille, Michelle. University Of Western Sydney.; Australi

    Expansion of spatial and host range of Puumala virus in Sweden: an increasing threat for humans?

    Get PDF
    Hantaviruses are globally distributed and cause severe human disease. Puumala hantavirus (PUUV) is the most common species in Northern Europe, and the only hantavirus confirmed to circulate in Sweden, restricted to the northern regions of the country. In this study, we aimed to further add to the natural ecology of PUUV in Sweden by investigating prevalence, and spatial and host species infection patterns. Specifically, we wanted to ascertain whether PUUV was present in the natural reservoir, the bank vole (Myodes glareolus) further south than Dalalven river, in south-central Sweden, and whether PUUV can be detected in other rodent species in addition to the natural reservoir. In total, 559 animals were collected at Grimso (59 degrees 43 ' N; 15 degrees 28 ' E), Sala (59 degrees 55 ' N; 16 degrees 36 ' E) and Bogesund (59 degrees 24 ' N; 18 degrees 14 ' E) in south-central Sweden between May 2013 and November 2014. PUUV ELISA-reactive antibodies were found both in 2013 (22/295) and in 2014 (18/264), and nine samples were confirmed as PUUV-specific by focus reduction neutralization test. Most of the PUUV-specific samples were from the natural host, the bank vole, but also from other rodent hosts, indicating viral spill-over. Finally, we showed that PUUV is present in more highly populated central Sweden

    Совершенствование управления краткосрочными активами предприятия (на примере ОАО «СтанкоГомель»)

    Get PDF
    Determining which reference genes have the highest stability, and are therefore appropriate for normalising data, is a crucial step in the design of real-time quantitative PCR (qPCR) gene expression studies. This is particularly warranted in non-model and ecologically important species for which appropriate reference genes are lacking, such as the mallard-a key reservoir of many diseases with relevance for human and livestock health. Previous studies assessing gene expression changes as a consequence of infection in mallards have nearly universally used β-actin and/or GAPDH as reference genes without confirming their suitability as normalisers. The use of reference genes at random, without regard for stability of expression across treatment groups, can result in erroneous interpretation of data. Here, eleven putative reference genes for use in gene expression studies of the mallard were evaluated, across six different tissues, using a low pathogenic avian influenza A virus infection model. Tissue type influenced the selection of reference genes, whereby different genes were stable in blood, spleen, lung, gastrointestinal tract and colon. β-actin and GAPDH generally displayed low stability and are therefore inappropriate reference genes in many cases. The use of different algorithms (GeNorm and NormFinder) affected stability rankings, but for both algorithms it was possible to find a combination of two stable reference genes with which to normalise qPCR data in mallards. These results highlight the importance of validating the choice of normalising reference genes before conducting gene expression studies in ducks. The fact that nearly all previous studies of the influence of pathogen infection on mallard gene expression have used a single, non-validated reference gene is problematic. The toolkit of putative reference genes provided here offers a solid foundation for future studies of gene expression in mallards and other waterfowl

    Совершенствование инновационной деятельности предприятия (на примере ОАО «СтанкоГомель»)

    Get PDF
    Background Wild waterfowl is the natural reservoir of influenza A virus (IAV); hosted viruses are very variable and provide a source for genetic segments which can reassort with poultry or mammalian adapted IAVs to generate novel species crossing viruses. Additionally, wild waterfowl act as a reservoir for highly pathogenic IAVs. Exposure of wild birds to the antiviral drug oseltamivir may occur in the environment as its active metabolite can be released from sewage treatment plants to river water. Resistance to oseltamivir, or to other neuraminidase inhibitors (NAIs), in IAVs of wild waterfowl has not been extensively studied. Aim and Methods In a previous in vivo Mallard experiment, an influenza A(H6N2) virus developed oseltamivir resistance by the R292K substitution in the neuraminidase (NA), when the birds were exposed to oseltamivir. In this study we tested if the resistance could be maintained in Mallards without drug exposure. Three variants of resistant H6N2/R292K virus were each propagated during 17 days in five successive pairs of naive Mallards, while oseltamivir exposure was decreased and removed. Daily fecal samples were analyzed for viral presence, genotype and phenotype. Results and Conclusion Within three days without drug exposure no resistant viruses could be detected by NA sequencing, which was confirmed by functional NAI sensitivity testing. We conclude that this resistant N2 virus could not compete in fitness with wild type subpopulations without oseltamivir drug pressure, and thus has no potential to circulate among wild birds. The results of this study contrast to previous observations of drug induced resistance in an avian H1N1 virus, which was maintained also without drug exposure in Mallards. Experimental observations on persistence of NAI resistance in avian IAVs resemble NAI resistance seen in human IAVs, in which resistant N2 subtypes do not circulate, while N1 subtypes with permissive mutations can circulate without drug pressure. We speculate that the phylogenetic group N1 NAs may easier compensate for NAI resistance than group N2 NAs, though further studies are needed to confirm such conclusions

    Тепловой расходомер

    Get PDF
    Полезная модель относится к области измерительной техники, а именно к тепловым устройствам для измерения расхода жидких или газообразных сред, и может быть использована в химической, электронной, энергетической и других отраслях промышленности

    Extensive Geographic Mosaicism in Avian Influenza Viruses from Gulls in the Northern Hemisphere

    Get PDF
    Due to limited interaction of migratory birds between Eurasia and America, two independent avian influenza virus (AIV) gene pools have evolved. There is evidence of low frequency reassortment between these regions, which has major implications in global AIV dynamics. Indeed, all currently circulating lineages of the PB1 and PA segments in North America are of Eurasian origin. Large-scale analyses of intercontinental reassortment have shown that viruses isolated from Charadriiformes (gulls, terns, and shorebirds) are the major contributor of these outsider events. To clarify the role of gulls in AIV dynamics, specifically in movement of genes between geographic regions, we have sequenced six gull AIV isolated in Alaska and analyzed these along with 142 other available gull virus sequences. Basic investigations of host species and the locations and times of isolation reveal biases in the available sequence information. Despite these biases, our analyses reveal a high frequency of geographic reassortment in gull viruses isolated in America. This intercontinental gene mixing is not found in the viruses isolated from gulls in Eurasia. This study demonstrates that gulls are important as vectors for geographically reassorted viruses, particularly in America, and that more surveillance effort should be placed on this group of birds
    corecore