12 research outputs found

    Towards a Clinically Relevant Lentiviral Transduction Protocol for Primary Human CD34+ Hematopoietic Stem/Progenitor Cells

    Get PDF
    Background: Hematopoietic stem cells (HSC), in particular mobilized peripheral blood stem cells, represent an attractive target for cell and gene therapy. Efficient gene delivery into these target cells without compromising self-renewal and multipotency is crucial for the success of gene therapy. We investigated factors involved in the ex vivo transduction of CD34 + HSCs in order to develop a clinically relevant transduction protocol for gene delivery. Specifically sought was a protocol that allows for efficient transduction with minimal ex vivo manipulation without serum or other reagents of animal origin. Methodology/Principal Findings: Using commercially available G-CSF mobilized peripheral blood (PB) CD34 + cells as the most clinically relevant target, we systematically examined factors including the use of serum, cytokine combinations, prestimulation time, multiplicity of infection (MOI), transduction duration and the use of spinoculation and/or retronectin. A self-inactivating lentiviral vector (SIN-LV) carrying enhanced green fluorescent protein (GFP) was used as the gene delivery vehicle. HSCs were monitored for transduction efficiency, surface marker expression and cellular function. We were able to demonstrate that efficient gene transduction can be achieved with minimal ex vivo manipulation while maintaining the cellular function of transduced HSCs without serum or other reagents of animal origin. Conclusions/Significance: This study helps to better define factors relevant towards developing a standard clinical protocol for the delivery of SIN-LV into CD34 + cells

    Cassette deletion in multiple shRNA lentiviral vectors for HIV-1 and its impact on treatment success

    No full text
    Abstract Background Multiple short hairpin RNA (shRNA) gene therapy strategies are currently being investigated for treating viral diseases such as HIV-1. It is important to use several different shRNAs to prevent the emergence of treatment-resistant strains. However, there is evidence that repeated expression cassettes delivered via lentiviral vectors may be subject to recombination-mediated repeat deletion of 1 or more cassettes. Results The aim of this study was to determine the frequency of deletion for 2 to 6 repeated shRNA cassettes and mathematically model the outcomes of different frequencies of deletion in gene therapy scenarios. We created 500+ clonal cell lines and found deletion frequencies ranging from 2 to 36% for most combinations. While the central positions were the most frequently deleted, there was no obvious correlation between the frequency or extent of deletion and the number of cassettes per combination. We modeled the progression of infection using combinations of 6 shRNAs with varying degrees of deletion. Our in silico modeling indicated that if at least half of the transduced cells retained 4 or more shRNAs, the percentage of cells harboring multiple-shRNA resistant viral strains could be suppressed to Conclusion Deletion of repeated expression cassettes within lentiviral vectors of up to 6 shRNAs can be significant. However, our modeling showed that the deletion frequencies observed here for 6× shRNA combinations was low enough that the in vivo suppression of replication and escape mutants will likely still be effective.</p

    Persistent Urban Influence on Surface Water Quality via Impacted Groundwater

    No full text
    Growing urban environments stress hydrologic systems and impact downstream water quality. We examined a third-order catchment that transitions from an undisturbed mountain environment into urban Salt Lake City, Utah. We performed synoptic surveys during a range of seasonal baseflow conditions and utilized multiple lines of evidence to identify mechanisms by which urbanization impacts water quality. Surface water chemistry did not change appreciably until several kilometers into the urban environment, where concentrations of solutes such as chloride and nitrate increase quickly in a gaining reach. Groundwater springs discharging in this gaining system demonstrate the role of contaminated baseflow from an aquifer in driving stream chemistry. Hydrometric and hydrochemical observations were used to estimate that the aquifer contains approximately 18% water sourced from the urban area. The carbon and nitrogen dynamics indicated the urban aquifer also serves as a biogeochemical reactor. The evidence of surface water–groundwater exchange on a spatial scale of kilometers and time scale of months to years suggests a need to evolve the hydrologic model of anthropogenic impacts to urban water quality to include exchange with the subsurface. This has implications on the space and time scales of water quality mitigation efforts

    Successful Implementation of Expanded Newborn Screening in the Philippines Using Tandem Mass Spectrometry

    No full text
    Newborn bloodspot screening (NBS) began as a research project in the Philippines in 1996 and was mandated by law in 2004. The program initially included screening for five conditions, with a sixth added in 2012. As screening technology and medical knowledge have advanced, NBS programs in countries with developed economies have also expanded, not only in the number of newborns screened but also in the number of conditions included in the screening. Various approaches have been taken regarding selection of conditions to be screened. With limited resources, low- and middle-income countries face significant challenges in selecting conditions for screening and in implementing sustainable screening programs. Building on expansion experiences in the U.S. and data from California on Filipinos born and screened there, the Philippine NBS program has recently completed its expansion to include 29 screening conditions. This report focuses on those conditions detectable through tandem mass spectrometry. Expanded screening was implemented in a stepwise fashion across the seven newborn screening laboratories in the Philippines. A university-based biochemical genetics laboratory provides confirmatory testing. Follow-up care for confirmed cases is monitored and provided through the NBS continuity clinics across the archipelago. Pre-COVID-19 pandemic, the coverage was 91.6% but dropped to 80.4% by the end of 2020 due to closure of borders between cities, provinces, and islands

    The STEDMAN Project: Biophysical, Biochemical and Metabolic Effects of a Behavioral Weight Loss Intervention during Weight Loss, Maintenance, and Regain

    No full text
    The Study of the Effects of Diet on Metabolism and Nutrition (STEDMAN) Project uses comprehensive metabolic profiling to probe biochemical mechanisms of weight loss in humans. Measurements at baseline, 2 and 4 weeks, 6 and 12 months included diet, body composition, metabolic rate, hormones, and 80 intermediary metabolites measured by mass spectrometry. In 27 obese adults in a behavioral weight loss intervention, median weight decreased 13.9 lb over the first 6 months, then reverted towards baseline by 12 months. Insulin resistance (HOMA) was partially ameliorated in the first 6 months and showed sustained improvement at 12 months despite weight regain. Ghrelin increased with weight loss and reverted to baseline, whereas leptin and PYY fell at 6 months and remained persistently low. NPY levels did not change. Factors possibly contributing to sustained improvement in insulin sensitivity despite weight regain include adiponectin (increased by 12 months), IGF-1 (increased during weight loss and continued to increase during weight regain), and visceral fat (fell at 6 months but did not change thereafter). We observed a persistent reduction in free fatty acids, branched chain amino acids, and related metabolites that may contribute to improved insulin action. These findings provide evidence for sustained benefits of weight loss in obese humans and insights into mechanisms
    corecore