26 research outputs found
Designer receptors for nucleotide-resolution analysis of genomic 5-Methylcytosine by cellular imaging
We report programmable receptors for the imaging-based analysis of 5-methylcytosine (5mC) in user-defined DNA sequences of single cells. Using fluorescent transcription-activator-like effectors (TALEs) that can recognize sequences of canonical and epigenetic nucleobases through selective repeats, we imaged cellular SATIII DNA, the origin of nuclear stress bodies (nSB). We achieve high nucleobase selectivity of natural repeats in imaging and demonstrate universal nucleobase binding by an engineered repeat. We use TALE pairs differing in only one such repeat in co-stains to detect 5mC in SATIII sequences with nucleotide resolution independently of differences in target accessibility. Further, we directly correlate the presence of heat shock factor 1 with 5mC at its recognition sequence, revealing a potential function of 5mC in its recruitment as initial step of nSB formation. This opens a new avenue for studying 5mC functions in chromatin regulation inâ
situ with nucleotide, locus, and cell resolution
Alcoholism and Intimate Partner Violence: Effects on Childrenâs Psychosocial Adjustment
It is widely recognized that alcoholism and relationship violence often have serious consequences for adults; however, children living with alcoholic parents are susceptible to the deleterious familial environments these caregivers frequently create. Given the prevalence of IPV among patients entering substance abuse treatment, coupled with the negative familial consequences associated with these types of behavior, this review explores what have been, to this point, two divergent lines of research: (a) the effects of parental alcoholism on children, and (b) the effects of childrenâs exposure to intimate partner violence. In this article, the interrelationship between alcoholism and IPV is examined, with an emphasis on the developmental impact of these behaviors (individually and together) on children living in the home and offers recommendations for future research directions
Die transkriptionelle und epigenetische Rolle BRD4's bei der zellulÀren Stressantwort
Die zellulÀre Stressantwort umfasst die Anpassung eines Organismus auf
umweltbedingte und endogene Stressfaktoren, welche durch eine Vielzahl von
molekularen Prozessen gesteuert wird. Eine Deregulierung dieser Antwort ist
ein Indikator und möglicher Auslöser vieler Krankheiten, insbesondere
Tumorerkrankungen, und bietet daher einen interessanten Angriffspunkt fĂŒr
Therapien. Ein sehr wichtiges und fĂŒr die Tumorforschung auch aus
therapeutischer Sicht Ă€uĂerst vielversprechendes Protein ist das BromodomĂ€nen
enthaltende Protein 4, kurz BRD4. BRD4 spielt in sehr vielen Bereichen der
Zelle eine wichtige Rolle, unter anderem als epigenetischer Sensor sowie
transkriptioneller Regulator und ist damit ein wichtiges Bindeglied zwischen
dem transkriptionellen Prozess und epigenetischen Mustern. Ziel dieser Arbeit
war es, die Rolle von BRD4 bei der epigenetischen, als auch der
transkriptionellen Regulation im Verlauf von zellulÀren Stressantworten zu
untersuchen. Durch Genexpressionsanalysen in BRD4-defizienten Zellen, sowie
Chromatin-ProteinInteraktionsstudien konnte ich 52 BRD4-regulierte Zielgene
identifizieren, welche vor allem fĂŒr Proteine der oxidativen Stressantwort
sowie der Hitzestressantwort kodieren. WeiterfĂŒhrende Analysen identifizierten
BRD4 als einen wichtigen Modulator eines der wichtigsten, mit oxidativem
Stress assoziierten Signalwege, dem KEAP1/NRF2 Signalweg. Durch eine
transkriptionelle Regulierung von KEAP1 kontrolliert BRD4 die AktivitÀt des
Transkriptionsfaktors NRF2, welche wiederum die Expression zytoprotektiver
Gene induziert. Eine Hemmung der BRD4 AktivitĂ€t fĂŒhrt unter Stress-Bedingungen
zu einer Verringerung an reaktiven Sauerstoffspezies (ROS) in der Zelle und zu
einem Schutz der Zellen vor oxidativem Stress-vermittelten Zelltod. Zudem
konnte ich anhand einer Vielzahl von molekularbiologischen Experimenten
zeigen, dass BRD4 direkt die Expression von HMOX1, einem ROS-regulierendes
Protein, ĂŒber eine Bindung an den Transkriptionsfaktor SP1, reguliert. Dieses
transkriptionelle Regulationsnetzwerk scheint bei Prostatakrebs gestört zu
sein, was möglicherweise eine zentrale Rolle beim malignen Prozess der
Tumorentstehung spielt. ZusÀtzlich zu seiner Funktion bei der
transkriptionellen Regulation gibt es bereits einige Hinweise, die eine Rolle
von BRD4 bei dem zellulĂ€ren SpleiĂprozess wahrscheinlich machen. Im Rahmen
meiner Arbeit konnte ich zeigen, dass BRD4 eine wichtige Rolle bei dem
SpleiĂvorgang unter Hitzestress spielt. So fördert es das, unter Hitzestress
beeintrÀchtigte, Herausschneiden von Introns. Weitere molekularbiologische
Analysen zeigten, dass unter diesen Stressbedingungen BRD4 in sub-nukleÀren
Strukturen, den sogenannten ânuclear stress bodiesâ, rekrutiert wird. Dort
aktiviert BRD4, zusammen mit dem Hitzeschock Faktor HSF1, die Transkription
von nicht-kodierenden Sat III RNAs. Diese werden als wichtige Modulatoren der
Stressinduzierten SpleiĂreaktion diskutiert. Zusammenfassend konnte ich
zeigen, dass BRD4 sowohl in die Transkiption, als auch in den Spleissprozess
unter zellulÀrem Stress involviert ist. Dies stellt eine weitere Grundlage
dar, Pathomechanismen der Tumorentstehung besser zu verstehen, aber auch, um
neue TherapieansÀtze zu entwickeln.The cellular stress response describes the adaptation of an organism to
environmental stressors by a variety of molecular changes. Deregulation of
this response is an indicator and possible promoter of many diseases, in
particular cancers, and therefore offers an interesting target for tumor
therapies. A for the tumor therapy very promising target is the bromodomains
containing protein 4 (BRD4). BRD4 plays a significant role in many cellular
processes: It is an epigenetic reader and transcriptional regulator and
therefore links the transcription process to epigenetic patterns. The aim of
this study was to further understand the role of BRD4 in the epigenetic and
transcriptional regulation of cellular stress responses. Through genome-wide
gene expression profiling in BRD4-deficient cells, and chromatin-protein
interaction studies, I was able to identify 52 BRD4-regulated target genes,
mainly encoded for proteins of the oxidative stress - and heat stress
response. Further analyses highlighted BRD4 as regulator of the oxidative
stress-induced KEAP1/NRF2 signalling pathway. By regulating the transcription
of KEAP1, BRD4 modulates the activity of the transcription factor NRF2 and, in
turn, the expression of cyto-protective genes under stress. An inhibition of
BRD4 resulted in decreased reactive oxygen species (ROS) production and
protected cells from oxidative stress mediated cell death. In addition, BRD4
also interacts with the transcription factor SP1 and directly regulates the
expression of HMOX1, a ROS reducing protein. Remarkably, this regulatory
network is disrupted in prostate cancer and thus might play a central role in
tumorigenesis. Furthermore, using RNA-sequencing analyses of BRD4-deficient
and heat treated cells I showed that a reduction of BRD4 expression increased
the heat shock-mediated splicing inhibition, in particular intron retentions.
Subsequent experiments revealed that under heat stress BRD4 binds to the heat
shock factor 1 (HSF1), which leads to the recruitment of BRD4 to sub-nuclear
structures, the socalled "nuclear stress bodies". The translocation of BRD4 is
associated with the transcriptional activation of non-coding Sat III RNA
expression. Sat III RNAs, in turn, are discussed as important modulators of
the stress-induced splicing process. Taken together, my results link BRD4 not
only to the transcription machinery, but also to the splicing process under
oxidative or heat stress, respectively. This gives additional insights into
the mode of action of BRD4 inhibitors and could lay the foundation for the
development of new therapeutic strategies
Evaluation of a Prognostic Epigenetic Classification System in Chronic Lymphocytic Leukemia Patients
BACKGROUND: Methylation at 5 CpG sites was previously shown to classify chronic lymphocytic leukemia (CLL) into 3 prognostic subgroups. Here, we aimed to validate the marker set in an additional cohort and to evaluate its clinical utility for CLL patient stratification. METHODS: We evaluated this epigenetic marker set in 79 German patients using bisulfite treatment followed by pyrosequencing and classification using a support vector machine-learning tool. RESULTS: The n-CLL, i-CLL, and m-CLL classification was detected in 28 (35%). 10 (13%), and 41 (51%) patients, respectively. Epigenetic grouping was associated with IGHV mutational status (P=2 x 10(-12)), isolated del13q (P=9x 10(-6)), del17p (P= .015), complex karyotype (P= .005), VH-usage, and clinical outcome as time to first treatment (P= 1.4 x 10(-12)) and overall survival (P= .003). Multivariate Cox regression analysis identified n-CLL as a factor for earlier treatment hazard ratio (HR), 6.3 (95% confidence interval [CI] 2.4-16.4; P= .0002) compared to IGHV mutational status (HR 4.6, 95% CI 1.9-11.3, P= .0008). In addition, when comparing the prognostic value of the epigenetic classification system with the IGHV classification, epigenetic grouping performed better compared to IGHV mutational status using Kaplan-Meier estimation and allowed the identification of a third, intermediate (i-CLL) group. Thus, our study confirmed the prognostic value of the epigenetic marker set for patient stratification in routine clinical diagnostics
Designer Receptors for Nucleotide-Resolution Analysis of Genomic 5-Methylcytosine by Cellular Imaging
We report programmable receptors for the imaging-based analysis of 5-methylcytosine (5mC) in user-defined DNA sequences of single cells. Using fluorescent transcription-activator-like effectors (TALEs) that can recognize sequences of canonical and epigenetic nucleobases through selective repeats, we imaged cellular SATIII DNA, the origin of nuclear stress bodies (nSB). We achieve high nucleobase selectivity of natural repeats in imaging and demonstrate universal nucleobase binding by an engineered repeat. We use TALE pairs differing in only one such repeat in co-stains to detect 5mC in SATIII sequences with nucleotide resolution independently of differences in target accessibility. Further, we directly correlate the presence of heat shock factor 1 with 5mC at its recognition sequence, revealing a potential function of 5mC in its recruitment as initial step of nSB formation. This opens a new avenue for studying 5mC functions in chromatin regulation in situ with nucleotide, locus, and cell resolution
The bromodomain protein BRD4 regulates splicing during heat shock
The cellular response to heat stress is an ancient and evolutionarily highly conserved defence mechanism characterised by the transcriptional up-regulation of cyto-protective genes and a partial inhibition of splicing. These features closely resemble the proteotoxic stress response during tumor development. The bromodomain protein BRD4 has been identified as an integral member of the oxidative stress as well as of the inflammatory response, mainly due to its role in the transcriptional regulation process. In addition, there are also several lines of evidence implicating BRD4 in the splicing process. Using RNAsequencing we found a significant increase in splicing inhibition, in particular intron retentions (IR), following heat treatment in BRD4-depleted cells. This leads to a decrease of mRNA abundancy of the affected transcripts, most likely due to premature termination codons. Subsequent experiments revealed that BRD4 interacts with the heat shock factor 1 ( HSF1) such that under heat stress BRD4 is recruited to nuclear stress bodies and non-coding SatIII RNA transcripts are up-regulated. These findings implicate BRD4 as an important regulator of splicing during heat stress. Our data which links BRD4 to the stress induced splicing process may provide novel mechanisms of BRD4 inhibitors in regard to anticancer therapies
Loss of Msh2 and a single-radiation hit induce common, genome-wide, and persistent epigenetic changes in the intestine
BackgroundMismatch repair (MMR)-deficiency increases the risk of colorectal tumorigenesis. To determine whether the tumors develop on a normal or disturbed epigenetic background and how radiation affects this, we quantified genome-wide histone H3 methylation profiles in macroscopic normal intestinal tissue of young radiated and untreated MMR-deficient VCMsh2(LoxP/LoxP) (Msh2(-/-)) mice months before tumor onset.ResultsHistone H3 methylation increases in Msh2(-/-) compared to control Msh2(+/+) mice. Activating H3K4me3 and H3K36me3 histone marks frequently accumulate at genes that are H3K27me3 or H3K4me3 modified in Msh2(+/+) mice, respectively. The genes recruiting H3K36me3 enrich in gene sets associated with DNA repair, RNA processing, and ribosome biogenesis that become transcriptionally upregulated in the developing tumors. A similar epigenetic effect is present in Msh2(+/+) mice 4weeks after a single-radiation hit, whereas radiation of Msh2(-/-) mice left their histone methylation profiles almost unchanged.ConclusionsMMR deficiency results in genome-wide changes in histone H3 methylation profiles preceding tumor development. Similar changes constitute a persistent epigenetic signature of radiation-induced DNA damage
Co-inhibition of BET proteins and PI3K alpha triggers mitochondrial apoptosis in rhabdomyosarcoma cells
Remodeling transcription by targeting bromodomain and extraterminal (BET) proteins has emerged as promising anticancer strategy. Here, we identify a novel synergistic interaction of the BET inhibitor JQ1 with the PI3K alpha-specific inhibitor BYL719 to trigger mitochondrial apoptosis and to suppress tumor growth in models of rhabdomyosarcoma (RMS). RNA-Seq revealed that JQ1/BYL719 co-treatment shifts the overall balance of BCL-2 family gene expression towards apoptosis and upregulates expression of BMF, BCL2L11 (BIM), and PMAIP1 (NOXA) while downregulating BCL2L1 (BCL-x(L)). These changes were confirmed by qRT-PCR and western blot analysis. Ingenuity pathway analysis (IPA) of RNA-Seq data followed by validation qRT-PCR and western blot identified MYC and FOXO3a as potential transcription factors (TFs) upstream of the observed gene expression pattern. Immunoprecipitation (IP) studies showed that JQ1/BYL719-stimulated increase in BIM expression enhances the neutralization of antiapoptotic BCL-2, BCL-x(L), and MCL-1. This promotes the activation of BAK and BAX and caspase-dependent apoptosis, as (1) individual silencing of BMF, BIM, NOXA, BAK, or BAX, (2) overexpression of BCL-2 or MCL-1 or (3) the caspase inhibitor N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethylketone (zVAD.fmk) all rescue JQ1/BYL719-induced cell death. In conclusion, co-inhibition of BET proteins and PI3K alpha cooperatively induces mitochondrial apoptosis by proapoptotic re-balancing of BCL-2 family proteins. This discovery opens exciting perspectives for therapeutic exploitation of BET inhibitors in RMS