626 research outputs found

    Attention and Functional Connectivity in Survivors of Childhood Brain Tumors

    Get PDF
    To study potential hyperactivity and hyperconnectivity based on the latent resource hypothesis, this study assessed functional connectivity in survivors of childhood brain tumors compared to their healthy peers during an attention task using psychophysiological interaction (PPI) analyses and evaluated for a relationship with performance. Twenty-three survivors and 23 healthy controls completed a letter n-back task in the scanner. An empirically-based seed was placed in the parietal lobe, a theoretical seed was placed in the hippocampus, and a control seed was placed in the occipital lobe. Differences in both performance and functional connectivity networks from each seed emerged between groups, with some findings supporting the latent resource hypothesis and other networks showing compensatory function in survivors. Attention networks, phonological networks, and executive function networks were all found to differ between controls and survivors

    Mind Your Meds: Safe Opioid Disposal Awareness

    Get PDF
    Driven by the effects of the opioid epidemic on friends, family members, students, and patients, members of the 2019 GEHLI Team “Mission Possible” are dedicated to bolstering educational awareness of safe leftover opioid disposal methods to decrease the supply of opioids in our community. On average, over 2/3 of opioid prescription medications are leftover and lead to later misuse or abuse (JAMA Survey). Despite a decrease in prescription writing for pain medication over the years, the mortality rate from overdose, and the rate of infants born to mothers with opioid abuse continues to steadily increase in Virginia (VDH). Team Mission Possible seeks to promote awareness of both the need and resources available for safe opioid disposal by educating prescribers in the VCU Health system and spreading knowledge to VCU patients, students, faculty, staff, and members of the surrounding community through: educational events on the Monroe Park and Medical campuses; teaming up with Miss Virginia’s “Mind your Meds campaign”; live Facebook interviews; and educational flyers

    Effect of Pre-test Genetic Counseling for Deaf Adults on Knowledge of Genetic Testing

    Get PDF
    Empirical data on genetic counseling outcomes in the deaf population are needed to better serve this population. This study was an examination of genetics knowledge before and after culturally and linguistically appropriate pre-test genetic counseling in a diverse deaf adult sample. Individuals ≥18 years old with early-onset sensorineural deafness were offered connexin-26/30 testing and genetic counseling. Participants completed questionnaires containing 10 genetics knowledge items at baseline and following pre-test genetic counseling. The effects of genetic counseling, prior beliefs about etiology, and participant’s preferred language on genetics knowledge scores were assessed (n = 244). Pre-test genetic counseling (p = .0007), language (p < .0001), prior beliefs (p < .0001), and the interaction between counseling and beliefs (p = .035) were predictors of genetics knowledge. American Sign Language (ASL)-users and participants with “non-genetic/unknown” prior beliefs had lower knowledge scores than English-users and participants with “genetic” prior beliefs, respectively. Genetics knowledge improved after genetic counseling regardless of participants’ language; knowledge change was greater for the “non-genetic/unknown” beliefs group than the “genetic” beliefs group. ASL-users’ lower knowledge scores are consistent with evidence that ethnic and cultural minority groups have less genetics knowledge, perhaps from exposure and access disparities. Culturally and linguistically appropriate pre-test genetic counseling significantly improved deaf individuals’ genetics knowledge. Assessing deaf individuals’ prior beliefs is important for enhancing genetics knowledge

    Campylobacter jejuni Type VI Secretion System: Roles in Adaptation to Deoxycholic Acid, Host Cell Adherence, Invasion, and In Vivo Colonization

    Get PDF
    The recently identified type VI secretion system (T6SS) of proteobacteria has been shown to promote pathogenicity, competitive advantage over competing microorganisms, and adaptation to environmental perturbation. By detailed phenotypic characterization of loss-of-function mutants, in silico, in vitro and in vivo analyses, we provide evidence that the enteric pathogen, Campylobacter jejuni, possesses a functional T6SS and that the secretion system exerts pleiotropic effects on two crucial processes – survival in a bile salt, deoxycholic acid (DCA), and host cell adherence and invasion. The expression of T6SS during initial exposure to the upper range of physiological levels of DCA (0.075%–0.2%) was detrimental to C. jejuni proliferation, whereas down-regulation or inactivation of T6SS enabled C. jejuni to resist this effect. The C. jejuni multidrug efflux transporter gene, cmeA, was significantly up-regulated during the initial exposure to DCA in the wild type C. jejuni relative to the T6SS-deficient strains, suggesting that inhibition of proliferation is the consequence of T6SS-mediated DCA influx. A sequential modulation of the efflux transporter activity and the T6SS represents, in part, an adaptive mechanism for C. jejuni to overcome this inhibitory effect, thereby ensuring its survival. C. jejuni T6SS plays important roles in host cell adhesion and invasion as T6SS inactivation resulted in a reduction of adherence to and invasion of in vitro cell lines, while over-expression of a hemolysin co-regulated protein, which encodes a secreted T6SS component, greatly enhanced these processes. When inoculated into B6.129P2-IL-10[superscript tm1Cgn] mice, the T6SS-deficient C. jejuni strains did not effectively establish persistent colonization, indicating that T6SS contributes to colonization in vivo. Taken together, our data demonstrate the importance of bacterial T6SS in host cell adhesion, invasion, colonization and, for the first time to our knowledge, adaptation to DCA, providing new insights into the role of T6SS in C. jejuni pathogenesis

    Longitudinal fNIRS and EEG metrics of habituation and novelty detection are correlated in 1–18-month-old infants

    Get PDF
    Introduction: Habituation and novelty detection are two fundamental and widely studied neurocognitive processes. Whilst neural responses to repetitive and novel sensory input have been well-documented across a range of neuroimaging modalities, it is not yet fully understood how well these different modalities are able to describe consistent neural response patterns. This is particularly true for infants and young children, as different assessment modalities might show differential sensitivity to underlying neural processes across age. Thus far, many neurodevelopmental studies are limited in either sample size, longitudinal scope or breadth of measures employed, impeding investigations of how well common developmental trends can be captured via different methods./ Method: This study assessed habituation and novelty detection in N = 204 infants using EEG and fNIRS measured in two separate paradigms, but within the same study visit, at 1, 5 and 18 months of age in an infant cohort in rural Gambia. EEG was acquired during an auditory oddball paradigm during which infants were presented with Frequent, Infrequent and Trial Unique sounds. In the fNIRS paradigm, infants were familiarised to a sentence of infant-directed speech, novelty detection was assessed via a change in speaker. Indices for habituation and novelty detection were extracted for both EEG and NIRS./ Results: We found evidence for weak to medium positive correlations between responses on the fNIRS and the EEG paradigms for indices of both habituation and novelty detection at most age points. Habituation indices correlated across modalities at 1 month and 5 months but not 18 months of age, and novelty responses were significantly correlated at 5 months and 18 months, but not at 1 month. Infants who showed robust habituation responses also showed robust novelty responses across both assessment modalities./ Discussion: This study is the first to examine concurrent correlations across two neuroimaging modalities across several longitudinal age points. Examining habituation and novelty detection, we show that despite the use of two different testing modalities, stimuli and timescale, it is possible to extract common neural metrics across a wide age range in infants. We suggest that these positive correlations might be strongest at times of greatest developmental change

    Voreloxin Is an Anticancer Quinolone Derivative that Intercalates DNA and Poisons Topoisomerase II

    Get PDF
    Topoisomerase II is critical for DNA replication, transcription and chromosome segregation and is a well validated target of anti-neoplastic drugs including the anthracyclines and epipodophyllotoxins. However, these drugs are limited by common tumor resistance mechanisms and side-effect profiles. Novel topoisomerase II-targeting agents may benefit patients who prove resistant to currently available topoisomerase II-targeting drugs or encounter unacceptable toxicities. Voreloxin is an anticancer quinolone derivative, a chemical scaffold not used previously for cancer treatment. Voreloxin is completing Phase 2 clinical trials in acute myeloid leukemia and platinum-resistant ovarian cancer. This study defined voreloxin's anticancer mechanism of action as a critical component of rational clinical development informed by translational research.Biochemical and cell-based studies established that voreloxin intercalates DNA and poisons topoisomerase II, causing DNA double-strand breaks, G2 arrest, and apoptosis. Voreloxin is differentiated both structurally and mechanistically from other topoisomerase II poisons currently in use as chemotherapeutics. In cell-based studies, voreloxin poisoned topoisomerase II and caused dose-dependent, site-selective DNA fragmentation analogous to that of quinolone antibacterials in prokaryotes; in contrast etoposide, the nonintercalating epipodophyllotoxin topoisomerase II poison, caused extensive DNA fragmentation. Etoposide's activity was highly dependent on topoisomerase II while voreloxin and the intercalating anthracycline topoisomerase II poison, doxorubicin, had comparable dependence on this enzyme for inducing G2 arrest. Mechanistic interrogation with voreloxin analogs revealed that intercalation is required for voreloxin's activity; a nonintercalating analog did not inhibit proliferation or induce G2 arrest, while an analog with enhanced intercalation was 9.5-fold more potent.As a first-in-class anticancer quinolone derivative, voreloxin is a toposiomerase II-targeting agent with a unique mechanistic signature. A detailed understanding of voreloxin's molecular mechanism, in combination with its evolving clinical profile, may advance our understanding of structure-activity relationships to develop safer and more effective topoisomerase II-targeted therapies for the treatment of cancer

    Use of Coronary Computed Tomographic Angiography to guide management of patients with coronary disease

    Get PDF
    Background In a prospective, multicenter, randomized controlled trial, 4,146 patients were randomized to receive standard care or standard care plus coronary computed tomography angiography (CCTA). Objectives The purpose of this study was to explore the consequences of CCTA-assisted diagnosis on invasive coronary angiography, preventive treatments, and clinical outcomes. Methods In post hoc analyses, we assessed changes in invasive coronary angiography, preventive treatments, and clinical outcomes using national electronic health records. Results Despite similar overall rates (409 vs. 401; p = 0.451), invasive angiography was less likely to demonstrate normal coronary arteries (20 vs. 56; hazard ratios [HRs]: 0.39 [95% confidence interval (CI): 0.23 to 0.68]; p < 0.001) but more likely to show obstructive coronary artery disease (283 vs. 230; HR: 1.29 [95% CI: 1.08 to 1.55]; p = 0.005) in those allocated to CCTA. More preventive therapies (283 vs. 74; HR: 4.03 [95% CI: 3.12 to 5.20]; p < 0.001) were initiated after CCTA, with each drug commencing at a median of 48 to 52 days after clinic attendance. From the median time for preventive therapy initiation (50 days), fatal and nonfatal myocardial infarction was halved in patients allocated to CCTA compared with those assigned to standard care (17 vs. 34; HR: 0.50 [95% CI: 0.28 to 0.88]; p = 0.020). Cumulative 6-month costs were slightly higher with CCTA: difference 462(95462 (95% CI: 303 to $621). Conclusions In patients with suspected angina due to coronary heart disease, CCTA leads to more appropriate use of invasive angiography and alterations in preventive therapies that were associated with a halving of fatal and non-fatal myocardial infarction. (Scottish COmputed Tomography of the HEART Trial [SCOT-HEART]; NCT01149590

    Gut Microbiome Perturbations Induced by Bacterial Infection Affect Arsenic Biotransformation

    Get PDF
    Exposure to arsenic affects large human populations worldwide and has been associated with a long list of human diseases, including skin, bladder, lung, and liver cancers, diabetes, and cardiovascular disorders. In addition, there are large individual differences in susceptibility to arsenic-induced diseases, which are frequently associated with different patterns of arsenic metabolism. Several underlying mechanisms, such as genetic polymorphisms and epigenetics, have been proposed, as these factors closely impact the individuals’ capacity to metabolize arsenic. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that perturbations of the gut microbial communities affect the spectrum of metabolized arsenic species and subsequent toxicological effects. In this study, we used an animal model with an altered gut microbiome induced by bacterial infection, 16S rRNA gene sequencing, and inductively coupled plasma mass spectrometry-based arsenic speciation to examine the effect of gut microbiome perturbations on the biotransformation of arsenic. Metagenomics sequencing revealed that bacterial infection significantly perturbed the gut microbiome composition in C57BL/6 mice, which in turn resulted in altered spectra of arsenic metabolites in urine, with inorganic arsenic species and methylated and thiolated arsenic being perturbed. These data clearly illustrated that gut microbiome phenotypes significantly affected arsenic metabolic reactions, including reduction, methylation, and thiolation. These findings improve our understanding of how infectious diseases and environmental exposure interact and may also provide novel insight regarding the gut microbiome composition as a new risk factor of individual susceptibility to environmental chemicals.National Institute of Environmental Health Sciences (Massachusetts Institute of Technology. Center for Environmental Health Sciences Grant P30 ES002109)National Institute of Environmental Health Sciences (University of North Carolina. Center for Environmental Health and Susceptibility Grant P30 ES010126
    corecore