1,165 research outputs found

    Smooth and Time-Optimal Trajectory Generation for High Speed Machine Tools

    Get PDF
    In machining complex dies, molds, aerospace and automotive parts, or biomedical components, it is crucial to minimize the cycle time, which reduces costs, while preserving the quality and tolerance integrity of the part being produced. To meet the demands for high quality finishes and low production costs in machining parts with complex geometry, computer numerical control (CNC) machine tools must be equipped with spline interpolation, feedrate modulation, and feedrate optimization capabilities. This thesis presents the development of novel trajectory generation algorithms for Non Uniform Rational B-Spline (NURBS) toolpaths that can be implemented on new low-cost CNC's, as well as, in conjunction with existing CNC's. In order to minimize feedrate fluctuations during the interpolation of NURBS toolpaths, the concept of the feed correction polynomial is applied. Feedrate fluctuations are reduced from around 40 % for natural interpolation to 0.1 % for interpolation with feed correction. Excessive acceleration and jerk in the axes are also avoided. To generate jerk-limited feed motion profiles for long segmented toolpaths, a generalized framework for feedrate modulation, based on the S-curve function, is presented. Kinematic compatibility conditions are derived to ensure that the position, velocity, and acceleration profiles are continuous and that the jerk is limited in all axes. This framework serves as the foundation for the proposed heuristic feedrate optimization strategy in this thesis. Using analytically derived kinematic compatibility equations and an efficient bisection search algorithm, the command feedrate for each segment is maximized. Feasible solutions must satisfy the optimization constraints on the velocity, control signal (i.e. actuation torque), and jerk in each axis throughout the trajectory. The maximized feedrates are used to generate near-optimal feed profiles that have shorter cycle times, approximately 13-26% faster than the feed profiles obtained using the worst-case curvature approach, which is widely used in industrial CNC interpolators. The effectiveness of the NURBS interpolation, feedrate modulation and feedrate optimization techniques has been verified in 3-axis machining experiments of a biomedical implant

    WISDOM Project -- XV. Giant Molecular Clouds in the Central Region of the Barred Spiral Galaxy NGC 5806

    Get PDF
    We present high spatial resolution (24\approx24 pc) Atacama Large Millimeter/sub-millimeter Array 12^{12}CO(2-1) observations of the central region of the nearby barred spiral galaxy NGC 5806. NGC 5806 has a highly structured molecular gas distribution with a clear nucleus, a nuclear ring and offset dust lanes. We identify 170170 spatially- and spectrally-resolved giant molecular clouds (GMCs). These clouds have comparable sizes (RcR_{\mathrm{c}}) and larger gas masses, observed linewidths (σobs,los\sigma_{\mathrm{obs,los}}) and gas mass surface densities than those of clouds in the Milky Way disc. The size -- linewidth relation of the clouds is one of the steepest reported so far (σobs,losRc1.20\sigma_{\mathrm{obs,los}}\propto R_{\mathrm{c}}^{1.20}), the clouds are on average only marginally bound (with a mean virial parameter αvir2\langle\alpha_{\mathrm{vir}}\rangle\approx2), and high velocity dispersions are observed in the nuclear ring. These behaviours are likely due to bar-driven gas shocks and inflows along the offset dust lanes, and we infer an inflow velocity of 120\approx120 kms1^{-1} and a total molecular gas mass inflow rate of 5\approx5 M_\odot yr1^{-1} into the nuclear ring. The observed internal velocity gradients of the clouds are consistent with internal turbulence. The number of clouds in the nuclear ring decreases with azimuthal angle downstream from the dust lanes without clear variation of cloud properties. This is likely due to the estimated short lifetime of the clouds (6\approx6 Myr), which appears to be mainly regulated by cloud-cloud collision and/or shear processes. Overall, it thus seems that the presence of the large-scale bar and gas inflows to the centre of NGC 5806 affect cloud properties.Comment: Accepted for publication in MNRAS, 20 pages, 16 figure

    WISDOM Project – XIX. Figures of merit for supermassive black hole mass measurements using molecular gas and/or megamaser kinematics

    Get PDF
    The mass (MBH) of a supermassive black hole (SMBH) can be measured using spatially-resolved kinematics of the region where the SMBH dominates gravitationally. The most reliable measurements are those that resolve the smallest physical scales around the SMBHs. We consider here three metrics to compare the physical scales probed by kinematic tracers dominated by rotation: the radius of the innermost detected kinematic tracer Rmin normalised by respectively the SMBH’s Schwarzschild radius (RSchw ≡ 2GMBH/c2, where G is the gravitational constant and c the speed of light), sphere-of-influence (SOI) radius (RSOIGMBH/σe2R_\mathrm{SOI}\equiv GM_\mathrm{BH}/\sigma _\mathrm{e}^2, where σe is the stellar velocity dispersion within the galaxy’s effective radius) and equality radius (the radius Req at which the SMBH mass equals the enclosed stellar mass, MBH = M*(Req), where M*(R) is the stellar mass enclosed within the radius R). All metrics lead to analogous simple relations between Rmin and the highest circular velocity probed Vc. Adopting these metrics to compare the SMBH mass measurements using molecular gas kinematics to those using megamaser kinematics, we demonstrate that the best molecular gas measurements resolve material that is physically closer to the SMBHs in terms of RSchw but is slightly farther in terms of RSOI and Req. However, molecular gas observations of nearby galaxies using the most extended configurations of the Atacama Large Millimeter/sub-millimeter Array can resolve the SOI comparably well and thus enable SMBH mass measurements as precise as the best megamaser measurements

    WISDOM project -- XVI. SMBH mass in the early-type galaxies NGC0612, NGC1574, and NGC4261 from CO dynamical modelling

    Get PDF
    We present a CO dynamical estimate of the mass of the super-massive black hole (SMBH) in three nearby early-type galaxies: NGC0612, NGC1574 and NGC4261. Our analysis is based on Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 3-6 observations of the 12^{12}CO(2-1) emission line with spatial resolutions of 145814-58 pc (0.010.260.01''-0.26''). We detect disc-like CO distributions on scales from 200\lesssim200 pc (NGC1574 and NGC4261) to 10\approx10 kpc (NGC0612). In NGC0612 and NGC1574 the bulk of the gas is regularly rotating. The data also provide evidence for the presence of a massive dark object at the centre of NGC1574, allowing us to obtain the first measure of its mass, MBH=(1.0±0.2)×108M_{\rm BH}=(1.0\pm0.2)\times10^{8} M_{\odot} (1σ\sigma uncertainty). In NGC4261, the CO kinematics is clearly dominated by the SMBH gravitational influence, allowing us to determine an accurate black hole mass of (1.62±0.04)×109(1.62{\pm 0.04})\times10^{9} M_{\odot} (1σ1\sigma uncertainty). This is fully consistent with a previous CO dynamical estimate obtained using a different modelling technique. Signs of non-circular gas motions (likely outflow) are also identified in the inner regions of NGC4261. In NGC0612, we are only able to obtain a (conservative) upper limit of MBH3.2×109M_{\rm BH}\lesssim3.2\times10^{9} M_{\odot}. This has likely to be ascribed to the presence of a central CO hole (with a radius much larger than that of the SMBH sphere of influence), combined with the inability of obtaining a robust prediction for the CO velocity curve. The three SMBH mass estimates are overall in agreement with predictions from the MBHσM_{\rm BH}-\sigma_{\star} relation.Comment: Main text: 20 pages, 14 Figures; Appendix: 7 pages, 6 Figures. Accepted for publication in MNRAS on 2023 March 2

    Climate stress resistance in male Queensland fruit fly varies among populations of diverse geographic origins and changes during domestication

    Get PDF
    Background: The highly polyphagous Queensland fruit fly (Bactrocera tryoni Froggatt) expanded its range substantially during the twentieth century and is now the most economically important insect pest of Australian horticulture, prompting intensive efforts to develop a Sterile Insect Technique (SIT) control program. Using a “common garden” approach, we have screened for natural genetic variation in key environmental fitness traits among populations from across the geographic range of this species and monitored changes in those traits induced during domestication. Results: Significant variation was detected between the populations for heat, desiccation and starvation resistance and wing length (as a measure of body size). Desiccation resistance was correlated with both starvation resistance and wing length. Bioassay data for three resampled populations indicate that much of the variation in desiccation resistance reflects persistent, inherited differences among the populations. No latitudinal cline was detected for any of the traits and only weak correlations were found with climatic variables for heat resistance and wing length. All three stress resistance phenotypes and wing length changed significantly in certain populations with ongoing domestication but there was also a strong population by domestication interaction effect for each trait. Conclusions: Ecotypic variation in heat, starvation and desiccation resistance was detected in Australian Qfly populations, and these stress resistances diminished rapidly during domestication. Our results indicate a need to select source populations for SIT strains which have relatively high climatic stress resistance and to minimise loss of that resistance during domestication

    A fundamental plane of black hole accretion at millimetre wavelengths

    Get PDF
    We report the discovery of the ‘mm fundamental plane of black hole accretion’, which is a tight correlation between the nuclear 1 mm luminosity (Lν, mm), the intrinsic 2–10 keV X-ray luminosity (LX, 2–10) and the supermassive black hole (SMBH) mass (MBH) with an intrinsic scatter (σint) of 0.40 dex. The plane is found for a sample of 48 nearby galaxies, most of which are low-luminosity active galactic nuclei. Combining these sources with a sample of high-luminosity (quasar-like) nearby AGN, we show that the plane still holds. We also find that MBH correlates with Lν, mm at a highly significant level, although such correlation is less tight than the mm fundamental plane (σint = 0.51 dex). Crucially, we show that spectral energy distribution (SED) models for both advection-dominated accretion flows (ADAFs) and compact jets can explain the existence of these relations, which are not reproduced by the standard torus-thin accretion disc models usually associated to quasar-like AGN. The ADAF models reproduces the observed relations somewhat better than those for compact jets, although neither provides a perfect fit. Our findings thus suggest that radiatively inefficient accretion processes such as those in ADAFs or compact (and thus possibly young) jets may play a key role in both low- and high-luminosity AGN. This mm fundamental plane also offers a new, rapid method to (indirectly) estimate SMBH masses

    WISDOM project – XVIII. Molecular gas distributions and kinematics of three megamaser galaxies

    Get PDF
    The co-evolution of galaxies and supermassive black holes (SMBHs) underpins our understanding of galaxy evolution, but different methods to measure SMBH masses have only infrequently been cross-checked. We attempt to identify targets to cross-check two of the most accurate methods, megamaser, and cold molecular gas dynamics. Three promising galaxies are selected from all those with existing megamaser SMBH mass measurements. We present Atacama Large Millimeter/sub-millimeter Array (ALMA) 12CO (2–1) and 230-GHz continuum observations with angular resolutions of ≈0"5. Every galaxy has an extended rotating molecular gas disc and 230-GHz continuum source(s), but all also have irregularities and/or non-axisymmetric features: NGC 1194 is highly inclined and has disturbed and lopsided central 12CO (2–1) emission; NGC 3393 has a nuclear disc with fairly regular but patchy 12CO (2–1) emission with little gas near the kinematic major axis, faint emission in the very centre, and two brighter structures reminiscent of a nuclear ring and/or spiral; NGC 5765B has a strong bar and very bright 12CO (2–1) emission concentrated along two bisymmetric offset dust lanes and two bisymmetric nuclear spiral arms. 12CO (2–1) and 12CO (3–2) observations with the James Clerk Maxwell Telescope are compared with the ALMA observations. Because of the disturbed gas kinematics and the impractically long integration times required for higher angular resolution observations, none of the three galaxies is suitable for a future SMBH mass measurement. None the less, increasing the number of molecular gas observations of megamaser galaxies is valuable, and the ubiquitous disturbances suggest a link between large-scale gas properties and the existence of megamasers

    Gravitational Wave Experiments and Early Universe Cosmology

    Get PDF
    Gravitational-wave experiments with interferometers and with resonant masses can search for stochastic backgrounds of gravitational waves of cosmological origin. We review both experimental and theoretical aspects of the search for these backgrounds. We give a pedagogical derivation of the various relations that characterize the response of a detector to a stochastic background. We discuss the sensitivities of the large interferometers under constructions (LIGO, VIRGO, GEO600, TAMA300, AIGO) or planned (Avdanced LIGO, LISA) and of the presently operating resonant bars, and we give the sensitivities for various two-detectors correlations. We examine the existing limits on the energy density in gravitational waves from nucleosynthesis, COBE and pulsars, and their effects on theoretical predictions. We discuss general theoretical principles for order-of-magnitude estimates of cosmological production mechanisms, and then we turn to specific theoretical predictions from inflation, string cosmology, phase transitions, cosmic strings and other mechanisms. We finally compare with the stochastic backgrounds of astrophysical origin.Comment: 99 pages, Latex, 17 figures. To appear in Physics Report. v4: conceptual changes in sect. 7.

    Microscopic Plasmodium falciparum Gametocytemia and Infectivity to Mosquitoes in Cambodia

    Get PDF
    Although gametocytes are essential for malaria transmission, in Africa many falciparum-infected persons without smear-detectable gametocytes still infect mosquitoes. To see whether the same is true in Southeast Asia, we determined the infectiousness of 119 falciparum-infected Cambodian adults to Anopheles dirus mosquitoes by membrane feeding. Just 5.9% of subjects infected mosquitoes. The 8.4% of patients with smear-detectable gametocytes were >20 times more likely to infect mosquitoes than those without and were the source of 96% of all mosquito infections. In low-transmission settings, targeting transmission-blocking interventions to those with microscopic gametocytemia may have an outsized effect on malaria control and elimination

    WISDOM Project – XXIII. Figures of merit for supermassive black hole mass measurements using molecular gas and/or megamaser kinematics

    Get PDF
    The mass (MBH) of a supermassive black hole (SMBH) can be measured using spatially-resolved kinematics of the region where the SMBH dominates gravitationally. The most reliable measurements are those that resolve the smallest physical scales around the SMBHs. We consider here three metrics to compare the physical scales probed by kinematic tracers dominated by rotation: the radius of the innermost detected kinematic tracer Rmin normalised by respectively the SMBH’s Schwarzschild radius (RSchw ≡ 2GMBH/c2, where G is the gravitational constant and c the speed of light), sphere-of-influence (SOI) radius (RSOIGMBH/σe2R_\mathrm{SOI}\equiv GM_\mathrm{BH}/\sigma _\mathrm{e}^2, where σe is the stellar velocity dispersion within the galaxy’s effective radius) and equality radius (the radius Req at which the SMBH mass equals the enclosed stellar mass, MBH = M*(Req), where M*(R) is the stellar mass enclosed within the radius R). All metrics lead to analogous simple relations between Rmin and the highest circular velocity probed Vc. Adopting these metrics to compare the SMBH mass measurements using molecular gas kinematics to those using megamaser kinematics, we demonstrate that the best molecular gas measurements resolve material that is physically closer to the SMBHs in terms of RSchw but is slightly farther in terms of RSOI and Req. However, molecular gas observations of nearby galaxies using the most extended configurations of the Atacama Large Millimeter/sub-millimeter Array can resolve the SOI comparably well and thus enable SMBH mass measurements as precise as the best megamaser measurements
    corecore