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Abstract 

In machining complex dies, molds, aerospace and automotive parts, or biomedical 

components, it is crucial to minimize the cycle time, which reduces costs, while preserving 

the quality and tolerance integrity of the part being produced. To meet the demands for high 

quality finishes and low production costs in machining parts with complex geometry, 

computer numerical control (CNC) machine tools must be equipped with spline interpolation, 

feedrate modulation, and feedrate optimization capabilities. This thesis presents the 

development of novel trajectory generation algorithms for Non Uniform Rational B-Spline 

(NURBS) toolpaths that can be implemented on new low-cost CNC's, as well as, in 

conjunction with existing CNC's. In order to minimize feedrate fluctuations during the 

interpolation of NURBS toolpaths, the concept of the feed correction polynomial is applied. 

Feedrate fluctuations are reduced from around 40 % for natural interpolation to 0.1 % for 

interpolation with feed correction. Excessive acceleration and jerk in the axes are also 

avoided. To generate jerk-limited feed motion profiles for long segmented toolpaths, a 

generalized framework for feedrate modulation, based on the S-curve function, is presented. 

Kinematic compatibility conditions are derived to ensure that the position, velocity, and 

acceleration profiles are continuous and that the jerk is limited in all axes. This framework 

serves as the foundation for the proposed heuristic feedrate optimization strategy in this 

thesis. Using analytically derived kinematic compatibility equations and an efficient 

bisection search algorithm, the command feedrate for each segment is maximized. Feasible 

solutions must satisfy the optimization constraints on the velocity, control signal (i.e. 

actuation torque), and jerk in each axis throughout the trajectory. The maximized feedrates 

are used to generate near-optimal feed profiles that have shorter cycle times, approximately 

13-26% faster than the feed profiles obtained using the worst-case curvature approach, which 

is widely used in industrial CNC interpolators. The effectiveness of the NURBS interpolation, 

feedrate modulation and feedrate optimization techniques has been verified in 3-axis 

machining experiments of a biomedical implant. 
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Chapter 1 

Introduction 

1.1 Introduction 

With the growing demands to machine complex dies, moulds, aerospace, automotive, and 

biomedical parts in shorter cycle time, the utilization of Non Uniform Rational B-spline 

(NURBS) toolpaths has become more important than ever before. NURBS curves and 

surfaces have been accepted as standard modelling tools in computer-aided design (CAD) 

systems and have also been incorporated into computer-aided manufacturing (CAM) systems 

by industrial forerunners such as ESPRIT® and Siemens®. The advantages of NURBS 

toolpaths over the conventional linear and circular toolpath definitions are that they achieve 

faster feedrates, higher accuracy, and better surface finish in machining parts with complex 

geometry.  

Computer Numerical Control (CNC) machine tools that utilize NURBS interpolation 

provide a significant competitive advantage to part manufacturers in terms of faster 

production rates and shorter time-to-market. The objective of this research is to develop new 

trajectory generation algorithms using NURBS toolpaths that reduce production cycle times 

in order to provide significant cost savings to part manufacturers. However, CNC machines 

are also a large investment, particularly for the small-to-medium sized enterprises. In order to 

make this technology accessible, it is important to make it modular, portable and low cost. 

Re-design of the CNC controller with new trajectory generation algorithms that incorporate 

parametric curve interpolation, smooth feedrate modulation, and feedrate optimization 

strategies is a practical approach to meet the high demands on part quality and fast 

production time while reducing manufacturing costs. Moreover, as NURBS becomes more 

widespread and mainstream, these algorithms can easily be implemented on low cost motion 

controllers. Inexpensive controllers will be able to deliver higher performance results. It is 

also desirable to integrate the new ideas with existing CNC's. One possibility could be to 

generate the optimized trajectories offline then download them to the controller's hard drive 

for real-time playback. Another is a semi-offline approach, wherein optimized feedrates for 
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S-curve profiles are determined offline, and then downloaded to the controller which is 

generally equipped to handle S-curve feed profiles for real-time calculation of the trajectory 

command positions. 

There are several challenges associated with realizing a successful NURBS trajectory 

generator. First of all, the toolpath interpolator should minimize unwanted feedrate 

fluctuations while being numerically efficient and robust against accumulating round-off 

errors. Feedrate fluctuations are artefacts of arc-length parameterization errors, caused by an 

inaccurate mapping between the spline parameter and the arc displacement along the spline 

toolpath during interpolation. Discontinuity in the feed profile results in unsmooth tool 

motion, which causes visible feed marks on the machined part. Moreover, if the discontinuity 

produces high acceleration and jerk, then motor torque saturation and excitation of the 

machine tool's structural modes, which have the effect of degrading the positioning 

performance, may be encountered. When axis servo errors become excessive, the part 

geometry gets distorted and machining tolerances may be violated. For these reasons, it is 

important to implement the interpolator such that the feedrate can be accurately controlled. 

The feed modulation, on the other hand, needs to be able to continuously adjust the feedrate 

along different segments of the toolpath while ensuring that the final trajectory is jerk limited 

in all axes. Kinematic compatibility conditions between position, velocity, acceleration, and 

jerk should never be violated. The ability to perform feedrate modulation allows feedrate 

optimization strategies to be implemented, which ensure that high accuracy can be 

maintained throughout the toolpath without compromising the speed in low curvature 

segments. A look-ahead module is required in order to plan sufficient distance for 

accelerations and decelerations and to resolve kinematically infeasible cases. Additionally, in 

order to be practical for real-time implementation, the feed modulation must be 

computationally efficient.  

Finally, reduction in the cycle time is due in large part to the feedrate optimization 

component. The minimum time feedrate optimization problem with jerk constraints is non-

linear and non-convex, and consequently, not easily solvable. In general, obtaining an 

optimal feed profile requires a forward and backward traversal of the entire toolpath, which 
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is impractical to perform in a real-time environment for very long toolpaths. To address this 

limitation, the toolpath can be divided into multiple segments and local near-optimal 

solutions can be computed. Unfortunately, there is no standard solution technique for this 

type of problem, but a customized solution methodology can be formulated given specific 

knowledge of the problem. Simplistic approaches tend to result in conservative feed profiles 

while gradient-based optimization techniques tend to be computationally expensive. A 

method that generates a feed profile with shorter cycle times than the simplistic solutions, 

with significantly less computational load compared to the gradient-based techniques, is 

sought. 

In this thesis, a robust and numerically efficient NURBS interpolation strategy is 

developed, and contains integrated feedrate modulation and feedrate optimization 

functionalities. Unwanted feedrate fluctuations and sensitivity to round-off errors are avoided 

by applying the feed correction polynomial concept to NURBS toolpaths. A numerically 

efficient feedrate modulation strategy is developed, based on the trapezoidal acceleration 

profile, which guarantees that the final trajectory is limited in jerk in all axes. Furthermore, 

kinematic continuity is achieved by enforcing compatibility conditions between connecting 

segments throughout long toolpaths. The feed modulation strategy can be integrated with 

various feed optimization techniques as well. Specifically, a heuristic feedrate optimization 

method, that is computationally efficient, is developed and tested alongside the NURBS 

interpolation scheme. By utilizing insights into the physical constraints of the problem, the 

solution converges quickly and infeasible solutions are resolved in an efficient manner. 

Effectiveness of the overall NURBS trajectory generator is demonstrated in 3-axis machining 

experiments of a benchmark contour toolpath and a complex sculptured surface, which was 

derived from a biomedical implant. 

 



  

 4  

Chapter 2 

Literature Review 

2.1 Introduction 

Extensive work on motion planning and trajectory generation in both robotics and 

machining fields has been undertaken in pursuance of increased productivity and reduced 

costs for manufacturing processes. This chapter presents a review of literature and industrial 

state-of-the-art in the areas of NURBS toolpath generation, feedrate generation, and feedrate 

optimization. The tasks of toolpath generation are distributed over two systems - the 

CAD/CAM system and the CNC controller. The distribution of these tasks, as in this thesis, 

is illustrated in Figure 2-1. Computationally intensive tasks such as the toolpath 

parameterization and integration of the segment arc-length are generally handled by the 

CAM system in an offline environment, whereas feed generation and trajectory interpolation 

are realized in the CNC controller in real-time. Feedrate generation and optimization are 

interfaced subtasks of the trajectory generation module in the CNC controller. In the 

following, Section 2.2 gives a brief introduction to NURBS curve representation for 

toolpaths. A review of toolpath parameterization methods is presented in Section 2.3. 

Various spline interpolation techniques for parametric curves are surveyed in Section 2.4. 

Feed generation and optimization methods are explored in Sections 2.5 and 2.6, respectively. 

Conclusions for the chapter are presented in Section 2.7. 
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2.2 Non Uniform Rational B-Splines (NURBS) Toolpaths 

Conventionally, curved toolpaths are described with small linear and circular segments 

that are simple to interpolate. However, conventional methods are no longer sufficient to 

meet the growing demands on productivity and part quality. Research has shown that 
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Figure 2-1. Overview of toolpath command generation as developed in this thesis.  The 
CAD/CAM system handles toolpath parameterization, arc length calculation and feed 
correction polynomial fitting, while the CNC controller performs feed generation, feed 

optimization and trajectory interpolation. 
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parametric spline interpolation has proven to be superior to linear and circular interpolation 

in terms of smoother and more continuous motion, which leads to better surface finish and 

faster feedrates [1] [2] [3] [4]. CAD models have long been able to utilize splines to design 

free-form contours and surfaces. However, only recently have splines started to become 

incorporated into industry standards and integrated into commercially available CAM 

systems and CNC controllers. Spline representation of curved toolpaths has two main 

advantages. First, the amount of data required to define spline segments is much less than 

that required to represent the same curve with linear and circular segments. Second, the 

continuity between segments allows for smoother motion that doesn't incur high jerk. 

Smoother motion improves the machine's positioning performance. 

Non uniform rational B-spline (NURBS), which is a generalization of basis spline curves 

such as Bézier and nonrational B-splines, is favorable for toolpath generation because it 

offers a mathematically precise representation of freeform surfaces [5]. Most designers find 

them geometrically intuitive. Furthermore, NURBS curves and surfaces developed in the 

CAD model can be used for toolpath planning in the part program, which would mean no 

loss of accuracy in the post processing routines. Loss in accuracy naturally happens when 

lines and circles are used to approximate curves. However, even if the CAD model is not 

defined using NURBS, toolpath parameterization can still be performed on standard CAD 

output data comprising of small linear motion commands to realize the cycle time reduction 

with spline interpolation.  

NURBS curves are defined by degree, control points, a knot vector, and weights. The 

degree of a cubic NURBS curve is three; for quintic, the degree is five. The order of a 

NURBS curve is the degree plus one.  The order is also equal to the minimum number of 

control points that are required to define a p-degree NURBS curve. The number of control 

points is denoted by n + 1. The knot vector is a set of monotonically increasing values in the 

parametric space and it determines the realm of influence that each control point has on the 

NURBS curve. The knot vector divides the parameter space into intervals known as knot 

spans. As the spline parameter enters a new knot span, a new control point starts to exert its 

influence on the curve and an old control point no longer has effect. Calculating a point on 

the curve is done by taking a weighted sum of the control points where weighting factors are 

determined by evaluating the B-spline basis functions at the spline parameter and multiplying 
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them by the weights assigned to individual control points. An example of how a 2-D NURBS 

curve (p = 3; n = 8) is constructed is illustrated in Figure 2-2. 

Control points are the geometric parameters that define the shape of the curve. A change 

in a control point's position results in a visible direct effect in shaping the curve locally. 

Weights also characterize the extent of a control point's influence on the curve's shape. 

Increasing the weight of a control point pulls the points on the curve affected by that control 

point closer to it. When a weight approaches infinity the curve will pass through the 

corresponding control point. On the other hand, decreasing the weight pushes the curve away 

from the corresponding control point, where a weight of zero eliminates all influence. The 

shape modification effects of control points and weights are illustrated in Figure 2-3. 

2.3 Toolpath Parameterization 

Toolpath parameterization is the task of obtaining a mathematical representation of a 

toolpath such that the position coordinates of the tool tip can be computed in terms of an 

independent variable called the spline parameter. This task takes place in the CAD/CAM 

system as shown in Figure 2-1. The most important requirements of the toolpath 

parameterization module are to generate splines that are geometrically continuous and to 

accurately describe the machining geometry. Spline segments that have common boundary 

positions are said to have 0G  continuity. If the unit tangent vectors at the segment boundary 

0
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Figure 2-2. NURBS curve representation. [5] 
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are equal, then the splines are 1G  continuous. Segments are 2G  continuous if they share a 

common center of curvature at the boundary. At the least, 2G  continuity is required to 

achieve smooth motion in CNC machining. Parametric derivative continuity, denoted as nC  

continuity where n  is the order of the derivative, is a special case of geometric continuity 

when the parameterization is with respect to the distance traveled along the toolpath, which is 

also known as arc-length parameterization. In the case of arc-length parameterization for 

toolpaths, 2C  continuity is necessary, however when the toolpath is not arc-length 

parameterized, 2G  continuity is sufficient and is much more flexible than parametric 

continuity constraints [6] [7]. 

 Formulating a NURBS curve involves obtaining a knot vector, weights, and control 

points, whereas for power basis polynomial representations, the only unknowns are the 

algebraic coefficients. Cubic and quintic polynomial splines have been heavily investigated. 

Wang and Yang [8] developed a spline curve fitting algorithm that starts by obtaining a 

chordal-length parameterized cubic spline; then based on the cubic spline finds a nearly arc-

length parameterized quintic spline (NAPQS) with 2C  continuity. Wang et al. [9] furthered 

this technique to produce approximately arc-length parameterized 3C  quintic interpolatory 

splines (AAP 3C QIS) by utilizing an iteration to optimize the parameterization and adding a 

third derivative continuity condition. Later, Erkorkmaz and Altintas [10] formulated and 

Y
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w6 = 

Effect of Control Points, Pi Effect of Weights, wi

 
Figure 2-3. Shape modification of a NURBS curve using control points and weights. [5] 
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solved an unconstrained minimization problem with an analytically integrable objective 

function to yield optimally arc-length parameterized (OAP) quintic splines. On the other 

hand, NURBS curve and surface fitting has been described in detail by Piegl and Tiller [5], 

whose methodology has been the basis for most NURBS parameterization techniques.  

In implementing the basic NURBS parameterization methods described in literature, the 

main issue was achieving curvature (i.e. second derivative) continuity at segment 

connections without introducing oscillations into the toolpath. The oscillations are 

undesirable because they cause the toolpath to deviate from the desired geometry and also 

cause unsmooth motion. To address this issue, Lee and Liang [11] modified the least squares 

curve fitting objective function to include a strain energy minimizing term, based on the 

integral of the squared curvature. Their rationale was to penalize high curvature, thereby 

reducing the oscillatory behaviour in the curve. For the same purpose, Sencer [12] presented 

a smoothening term which penalized high jerk values. In this thesis, beta-constraints, which 

are mathematical relationships that determine if two parametric curves connect with 

geometric derivative continuity [6] [7], are investigated.  

Barsky and DeRose introduced beta-constraints for applications in computer graphics to 

test the smoothness of two connected parametric curves, which may have different 

parameterizations. Their definition of geometric continuity is as follows:  

"Definition 1. Let )(uq  and )(tr  be two regular nC  parameterizations meeting at a point 

J . They meet with nth-order geometric continuity, denoted nG , if there exists a 

parameterization q~  equivalent to q such that q~  and r  meet with nC  continuity at the point 

J ." [6] 

In other words, if it is possible to reparameterize one of the curves such that the two 

curves meet with 2C parametric continuity, then the two curves join smoothly. For example, 

consider two parametric curves, )(uq , ]1,0[∈u , and )(tr , ]1,0[∈t  that meet with 2G  

continuity at the junction )1()0( qr = . Then there exists a scalar function, )~(uu , that maps 

]1,0[]1,~[~
0 ∈⇒∈ uuu without changing the shape of )(uq , such that )~(~))~(( uuu qq =  [6]. 

From Definition 1: 
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)1(~)0(
)1(~)0(

qr
qr
′′=′′
′=′

 
(2.1)

Using the chain rule, the first and second derivatives of ))~(()~(~ uuu qq =  can be written as: 

)~())~(()~())~(()~(~
)~())~(()~(~

2 uuuuuuuuu

uuuuu

′′⋅′+′⋅′′=′′

′⋅′=′

qqq

qq

 
(2.2)

Given that 1)1~( ==uu  from the mapping, the first and second derivatives of q~  

evaluated at 1~ =u  are: 

)1()1()1()1()1(~
)1()1()1(~

2 uu

u

′′⋅′+′⋅′′=′′

′⋅′=′

qqq

qq

 
(2.3)

In [6], )1(u′  and )1(u ′′  are substituted with beta values 1β  and 2β , where 1β  must be 

greater than zero to preserve the direction of the tangent vector, and 2β  can be any real value. 

Substituting in the beta values and Equation (2.3) into Equation (2.1) yields the beta-

constraints for first and second order geometric continuity. 

)1(2β)1(1β)0(

)1(1β)0(
2 qqr

qr

′⋅+′′⋅=′′

′⋅=′

 
(2.4)

Equation (2.4) is used in the NURBS toolpath parameterization to generate segmented 

toolpaths, which have 2G  continuity. Rather than enforcing parametric continuity, geometric 

derivative continuity constraints are imposed because they allow for further shaping of the 

NURBS toolpath in order to eliminate oscillations, while ensuring continuity at segment 

boundaries. In this thesis, Chapter 3 presents a NURBS toolpath parameterization that 

utilizes beta-constraints to guarantee 2G  continuous toolpaths. 

2.4 Spline Interpolation 

In the CNC controller, trajectory interpolation of the spline toolpath is performed to 

obtain a commanded position at each sample time step as shown in the "Trajectory 

Interpolation" block in Figure 2-1. In this stage, the spline parameter is transformed into the 

time domain and the toolpath is converted into a machining trajectory which takes into 
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account machining conditions such as feed, acceleration, actuating torques, and jerk [8]. For 

an arc-length parameterized spline )(sC , where s is the arc-length, conversion to the time 

domain only requires the calculation of arc-length positions )(ts , based on a feed generation 

technique at each time step, skTt = , where sT  is the sampling period and k  is an integer 

value between zero and the total number of time steps, tN . Substituting those values directly 

into the parametric curve equation yields position commands at each time step, i.e. 

)())(( tCtsC = . Toolpaths that are not parameterized according to their arc-length require an 

additional transformation from the spline parametric space to the arc-length displacement 

along the curve. Arc-length positions at each time step are converted to spline parameter 

values with the mapping defined by )(su  and substituted into the parametric definition of the 

curve such that )()))((()( tCtsuCuC =→ . The challenge in implementing a spline 

interpolator is efficiently calculating the spline parameter accurately to achieve the desired 

arc displacement increment along the toolpath at each time step. If the tool tip does not travel 

the specified arc displacement, then feedrate fluctuations result and lend to high acceleration 

and jerk values, which are detrimental to the part quality and the machine tool's life. 

Erkorkmaz and Altintas [10] reported feed fluctuations on the order of 0.2% for the 88-

segment fan-shaped toolpath used by Wang et al. [8] [9], and up to 78% feed fluctuation for a 

spline toolpath composed of ten random points. In the former case, although the feed 

fluctuations may not seem high, the resulting oscillations it causes in the acceleration and 

jerk profiles are still more significant and tie into the part quality and machine life. It is also 

important to note that the mapping between the spline parameter and the arc-length needs to 

be robust against numerical round-off and accumulation errors.   

Natural interpolation assumes a proportional relationship between the spline parameter 

,u  and the arc-length ,s  as shown in Equation (2.5). Here, L  is defined as the segment's arc-

length, sT  is the sampling period and tN  is the total number of time steps. The domain of the 

spline parameter, ,u  is assumed to be between zero and one. 

t

s

Nk
kTt

whereLtstu
,,1,0

/)()(
K=

=
=

 
(2.5)
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Basically the curve is being interpolated at constant spline parameter increments. This 

method is generally sufficient for approximately arc-length parameterized toolpaths. 

However, when this relationship does not hold, better estimates of the spline parameter can 

be computed with a Taylor series approximation as follows:  

{ t

terms
order
higher

term
order

nd

sk

term
order
st

skkk NkwhereTOHTuTuuu ,,1,0...
2
1

2

2

1
1 K321

4321
&&& =+++= −

 (2.6)

Above, ku  and 1−ku  are the spline parameter values at the current and previous time 

steps, respectively; ku&  and ku&&  are the first and second derivatives of the spline parameter 

with respect to time, calculated at the current time step. Huang and Yang [13] presented a 

first-order Taylor series approximation to realize the desired feedrate, which has been 

successfully implemented in commercially available CNC systems [14]. Lin [15] proposed a 

second-order approximation that was reported to achieve better accuracy, naturally at higher 

computational cost, which further reduced the magnitude of the feedrate fluctuations. The 

downfall of Taylor series approximations is the inevitable accumulation of numerical errors 

due to the recursive addition and rounding. To eliminate these errors, Erkorkmaz and Altintas 

[16] developed an iterative approach to solve for the spline parameter utilizing a high-order 

polynomial relationship between the desired arc increment and parameter increment. Despite 

the high-order, in general less than three iterations were required to converge on a solution. 

Another technique proposed by Cheng et al. [17] is a predictor-corrector algorithm for better 

feedrate control. Furthermore, Erkorkmaz and Altintas [10] introduced the use of a feed 

correction polynomial. For example, 

76
5

2
6

1
7

0 ααα asasssu +++++= L
 

(2.7)

Utilizing numerical evaluations of the arc-length at incremental spline parameter values, 

a 7th order polynomial is obtained to express the spline parameter in terms of the derived arc-

length as shown in the "Feed Correction Polynomial" block in Figure 2-1. Lei et al. [18] 

developed a similar concept with cubic Hermite splines and called it the inverse length 

function (ILF). In this thesis, feed correction is chosen to be investigated for NURBS 
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interpolation because of its robustness against accumulating round-off errors, which is prone 

to happen with a truncated Taylor series expansion. Also, the polynomial can be evaluated 

more efficiently compared to iterative techniques, thereby leaving more resources for 

feedrate optimization and other CNC functions.  

The main challenge encountered when fitting a feed correction polynomial for NURBS 

segments is capturing the relationship between the spline parameter and arc-length with a 

single polynomial, when the toolpath geometry is significantly complex. In this thesis, a 

method for fitting multiple 7th-order polynomial splines is developed based on the 

complexity of the toolpath and a pre-specified mean square error (MSE) tolerance on the 

fitting error. Chapter 3 explains the feed correction polynomial as applied to NURBS 

toolpaths. 

2.5 Feed Generation 

Feed generation takes place in the CNC controller as shown in Figure 2-1 and 

characterizes the motion along the toolpath in terms of the arc displacement )(ts , feed )(ts& , 

acceleration )(ts&& , and jerk )(ts&&&  in the tangential direction. To achieve smooth motion, the 

displacement, feedrate and acceleration profiles must be continuous throughout the toolpath. 

The feed generation must also limit the jerk, in order to achieve high performance tracking 

and avoid exciting the structural modes of the machine tool. Several feed profiles have been 

suggested in the literature. Erkorkmaz and Altintas [16] presented a jerk-limited feed profile 

composed of piecewise constant jerk values. Acceleration transients demonstrate a 

characteristic trapezoidal profile and the feedrate exhibits an S-curve profile which has 

parabolic transitions.  The formulation is simple and the computational load is small. 

Macfarlane and Croft [19] proposed a jerk-bounded trajectory that employed an 

approximation of a sine wave for the acceleration ramps. A jerk-continuous profile was also 

introduced by Erkorkmaz [20] that utilized cubic acceleration transients which are obtained 

by integrating quadratic jerk functions. In the same vein, Pritschow integrated a squared sine 

jerk function, )(sin 2  [21]. The last three methods are favorable for better continuity. These 

feed generation techniques are applied to a single toolpath segment and are scalable to longer 

toolpaths, by considering the kinematic compatibility conditions between adjacent segments. 
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Recently, methodologies that generate multiple segment profiles have started to be reported 

in the literature. Lin et al. [22] proposed a method for scheduling S-shape feed profiles with 

triangular acceleration/deceleration transients for multi-segmented toolpaths. Independently 

from their research, the work in this thesis follows a similar approach but differs in 

conceptualizing the implementation of the feed profiling.  

There are two challenges related to successful feed generation. The first is implementing 

the feed profiling with the desired feedrate and specified limits on the acceleration and jerk 

such that kinematic compatibility is maintained. Kinematic compatibility is achieved if there 

is enough travel distance to perform the desired feed motion. The second is modulating the 

feed continuously for long toolpaths that have variable command feedrates for each segment. 

To address the first challenge, kinematic compatibility conditions must be checked to ensure 

that the desired motion can be physically carried out. For example, if a toolpath segment 

lacks the travel length to accelerate to the desired feedrate and subsequently decelerate to the 

specified end feedrate, then the desired feedrate must be modified to reflect an achievable 

feed transition within the specified acceleration and jerk bounds. Erkorkmaz and Altintas [16] 

derived four conditions on the jerk, acceleration, deceleration, and travel length for their 

proposed jerk-limited feed profile. In this thesis, similar compatibility conditions are derived 

for the proposed multi-segment framework. As for the second challenge, feed modulation has 

generally been handled by a look-ahead module that adjusts the feedrate at high curvature 

sections of the toolpath. According to the prescribed chord error tolerance, the feed is 

decreased as necessary and a re-interpolation of the feed profile is performed to generate 

acceleration and deceleration ramps that are jerk-limited considering the machine's dynamics 

[23] [24]. This method is as also known as two-stage interpolation [25]. Lin et al. [22] also 

consider the errors due to the servo control loop dynamics. However, there is a lack of 

direction on what to do when the designed feed profile runs into compatibility issues. For 

example, how to resolve the issue when the command feedrates cannot be realized smoothly, 

especially when toolpaths have multiple segments. In this work, the proposed framework 

performs feed modulation segment-by-segment concurrently with kinematic compatibility 

checks prior to any interpolation, which eliminates the second interpolation step and 

guarantees that the interpolated trajectory is smooth and continuous. Chapter 4 proposes a 
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generalized framework for long toolpaths based on the jerk limited S-curve function, which 

is widely utilized in existing CNC`s.   

2.6 Feed Optimization 

In machining complex dies, molds, aerospace and automotive parts, or biomedical 

components, it is crucial to minimize the cycle time while preserving the quality and 

tolerance integrity of the part being produced. Optimization of the feed profile in machining 

NURBS toolpaths, which are becoming more widespread for producing freeform parts [26] 

[27] plays a major role in achieving this objective. Unfortunately, the feed optimization 

problem does not lend itself to a straightforward solution, especially when jerk limits in the 

individual axes need to be considered, in order to limit the amount of vibration and 

contouring error induced during rapid tool movements. Hence, extensive research has been 

dedicated to solving this problem. 

A two-pass algorithm for minimum time trajectory planning of a robotic manipulator was 

developed in the seminal paper by Bobrow et al. [28], which yields the optimal feed profile 

subject to torque constraints. However, the resulting motion is jerky due to discontinuous 

actuator torques. Constantinescu and Croft [29] addressed this issue by also limiting the first 

derivative of actuator torques or the "torque rate," which produced smooth time-optimal 

trajectories. In the machining literature, Bobrow's technique has recently been extended to 

also incorporate jerk limits by Dong et al. [30]. Although theoretically successful, the 

requirement to perform full forward and backward passes limits the practicality of this 

approach, particularly for long toolpaths. A practical and highly effective look-ahead 

technique was proposed by Weck et al. [31], which is based on setting the feed limit for each 

segment by considering the local worst-case curvature. This method has a straightforward 

formulation and requires minimal computation, allowing convenient implementation in CNC 

interpolators. However, the cycle time reduction is mildly conservative, since the toolpath 

sections where higher feedrates are feasible are not fully utilized. An alternative strategy was 

proposed by Altintas and Erkorkmaz [32] that performs a gradient-based search among 

possible minimized-jerk feed profiles, which leads to shorter cycle times, but at the expense 

of significantly higher computational load. The latter approach may be more suitable for 

semi-offline process planning. 
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In general, the constraints for the feedrate optimization problem are based on the physical 

capabilities of the machine and other factors that affect the final part quality and surface 

finish. Cheng and Chin [33] investigated the causes of machining contour errors and in 

particular developed a system model that incorporated errors due to the cutting process, 

trajectory tracking, and the machine structure. The focus of this thesis is on the trajectory 

generation process in which the feedrate, acceleration and jerk are significant factors that 

affect the tracking performance. The feedrate is correlated to the cutting forces between the 

tool and the workpiece. Erdim et al. [36] developed a feedrate maximizing strategy that 

utilized a force-based model of the system cutting dynamics. As excessive cutting forces 

degrade the part quality, the feedrate was maximized subject to a maximum allowable cutting 

force. In this thesis, a maximum feed limit is incorporated to allow regulation of the cutting 

forces. Additionally, the physical limits of the actuators' speed and torque must also be 

respected. Actuator limitations can be expressed through constraints on the velocity and 

acceleration, as shown in [28]. It is also possible to replace the acceleration constraints with 

limits on the torque demand, which can be predicted by a dynamic model of the system, as 

was done in [32]. Similarly, Butler et al. [35] presented a feedrate generation method that 

yielded minimum travel time without actuator saturations, based on knowledge of the axis 

dynamics. Avoiding actuator saturation is necessary. If the actuators are saturated, then the 

system becomes non-linear, which can lead to instability. Lastly, it has been experimentally 

verified that the jerk of the desired trajectory can adversely affect the tracking control 

performance of robotic manipulators [34] and machine tools [16]. Limits on the jerk are 

necessary to achieve smooth motion. Thus in this thesis, feedrate optimization is performed 

subject to constraints on the feedrate, as well as, on the velocity, torque demand, and jerk in 

each axis. 

Chapter 5 presents a new heuristic technique which yields shorter cycle time compared to 

the "worst-case" approach presented in [31], and converges to a feasible solution faster than 

gradient-based methods [32], within a deterministic number of iterations. The essence of the 

new technique is presented, along with benchmark experiments comparing the heuristic 

method to other approaches proposed in CNC literature. The feed optimization technique 

developed in this thesis is also in the process of being published in [37]. 
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2.7 Conclusions 

This chapter has presented a survey of academic literature and industrial practice relevant 

to NURBS toolpath planning, feedrate generation and optimization. To realize smooth and 

continuous motion, the spline interpolator must realize the desired arc displacement required 

by the commanded feed profile. Additionally, the feed generation method must ensure that 

the feed profile demonstrates acceleration continuity throughout the toolpath, while 

providing the capability to modulate the feed as necessary. To exploit the full potential of 

NURBS toolpaths, a feedrate optimization method is required to generate time-optimal 

trajectories subject to the dynamic constraints determined by the machine tool's physical and 

control capabilities. All three components together make up a command trajectory generator 

for a state-of-the-art CNC controller that meets the demands of high productivity and high 

quality, without incurring large capital costs. Hence, there is a strong need to develop 

NURBS trajectory generation algorithms to implement on existing and new low-cost 

machine tools, in a practical and reliable manner. In the following, Chapter 3 presents 

NURBS toolpath parameterization and interpolation methods. Chapter 4 describes the 

proposed feed generation framework for multi-segment toolpaths. Finally, Chapter 5 

develops a feedrate optimization method that can be successfully integrated into the CNC 

controller with the aforementioned NURBS interpolation and feed generation components. 

 



  

18 

Chapter 3 

NURBS Trajectory Generation 

3.1 Introduction 

In this chapter, a numerically robust and computationally efficient method for NURBS 

trajectory generation is presented. In Section 3.2, a parameterization method is designed 

which fits smooth and geometrically continuous NURBS curves to designated data points. 

Interpolation of the NURBS curve is performed with a feed correction polynomial that maps 

the distance traveled along the spline to the spline parameter. To obtain the feed correction 

polynomial, a constrained optimization problem is constructed and solved in Section 3.3, 

using the Lagrange Multipliers (LM) technique. Simulation results demonstrating the 

effectiveness of the developed trajectory interpolation method are presented in Section 3.4. 

The conclusions are presented in Section 3.5. 

3.2 NURBS Toolpath Parameterization 

Non uniform rational B-splines have been incorporated into state-of-the-art CAD/CAM 

software packages such as Unigraphics NX3 and CATIA V5. However, the use of NURBS in 

geometric modelling is much older than the use of NURBS in toolpath planning, which is 

still at an early stage. Hence, much work still remains to create advanced algorithms for 

NURBS to be practically used in trajectory generation. In order to test the trajectory 

generation methods in this thesis, the NURBS toolpaths need to be segmented and 

geometrically continuous up to the second derivative, which includes position, tangent and 

curvature continuity. Using a CAD/CAM package such as Unigraphics, it was found that 

only position continuity was maintained between segments in the toolpath generation. The 

discontinuities in the derivative profiles pose several problems for the CNC controller in 

terms of tracking performance. This served as the motivation for developing a curve fitting 

algorithm that produces segmented, curvature continuous NURBS toolpaths.  

The objective of the NURBS curve fitting algorithm is to optimally place the control 

points, given assigned knots and weights, such that the error between the specified data 
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points and the curve is minimized, as shown in Figure 3-1. At the same time, maintaining 

geometric continuity between the segments is desired to ensure that the toolpath is smooth. 

Geometric continuity constraints for position ( 0G ), tangent ( 1G ) and curvature ( 2G ) are 

imposed to guarantee smoothness at each segment boundary. Beta-constraints, which were 

developed by Barsky and DeRose [6] [7], are utilized here to impose these boundary 

conditions. A constrained optimization problem that minimizes the errors, ex and ey, between 

the specified data points and the segmented curve, while adhering to geometric constraints, is 

constructed. The control points are solved for using the Lagrange Multipliers technique.  

As illustrated in Figure 2-2, a NURBS curve is represented by a knot vector, U, a set of 

control points, iP , and weights for each control point, iw . The degree of the curve is denoted 

as p and the number of control points is n + 1. Defining the knot vector as shown in Equation 

(3.1), B-spline basis functions, piN , , are evaluated recursively at the spline parameter, u, 

with Equation (3.2). 
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Figure 3-1. Optimal placement of control points to fit multiple NURBS segments to data 

points. 
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The knots on the spline parameter axis are denoted by iu  and the ith knot span is defined 

as the spline parameter range between the ith and i+1th knot. Evaluation of the zero (p=0), 

first (p=1), and second (p=2) degree B-spline functions at u* is demonstrated in Figure 3-2. 

u* lies within the i+1th knot span. Thus, *)(0, uNi  is zero since u* is outside the ith knot 

span, however *)(0,1 uNi+  is one. First degree B-spline functions are simply a blend of the 
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Figure 3-2. Evaluation of zero (p=0), first (p=1) and second (p=2) degree B-spline basis 

functions. 
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zero degree B-spline functions. *)(1, uNi  is a linear combination of the zero degree B-spline 

functions, 0,iN and 0,1+iN  evaluated at u*. The ratio of the ith span to the distance between 

u* and the ith knot is the contribution of the *)(0, uNi  term, while the ratio of the i+1th span 

to the distance between u* and the i+2th knot is the contribution of the *)(1, uNi  term. 

Similarly, second degree B-spline functions are blends of the first degree functions.  

Combining the B-spline basis functions with the weights into a single term, the points on 

a NURBS curve are linear combinations of the control points, as shown in Equation (3.3). 

This property allows the construction of a linear system of equations for the constrained 

optimization problem used in determining the control point locations. 
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It is important to note that a p-degree NURBS curve must have at least p + 1 control 

points, which gives the requirement that pn ≥  since n + 1 is the number of control points. In 

order to fit multiple NURBS segments to the designated data points, we must first arrange the 

number of data points and the number of control points for each curve segment such that n is 

greater than or equal to p.  The number of control points is set to be equal to the number of 

data points so that only one value needs to be selected, while still maintaining full rank for 

the optimization problem. Given a set of data points T
iiii zyx ][=Q  of size M + 1, and 

the desired degree p and value for n, the data points are segment such that each NURBS 

segment has n + 1 data points, where the last data point of a segment is also the first data 

point of the next adjacent segment, as shown in Figure 3-3. For example, if p = 2 and n = 3, 

each data point iQ  is assigned to a placement holder, ik ,q , which represents the ith data 

point in the kth segment, as shown in Table 3-1.   
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In some cases, the number of data points in the last segment will not be sufficient to fit a 

p-degree NURBS curve.  To resolve this issue, the data points are absorbed into the second 

last segment. An example of this circumstance is illustrated in Figure 3-3, where the number 

of data points is 18, p = 3 and n = 4. The last segment is assigned six control points, hence, 

5=Nn , where N is the total number of segments.  

To construct the curve fitting optimization problem, a system of linear equations is 

composed of predictions that correspond to the data points. First, each data point is assigned 

a spline parameter value, u , based on the chord length parameterization method described by 

Table 3-1. Segmentation of data points. 

Segment, k i = 0 i = 1 i = 2 i = 3 = n 

k=1 00,1 Qq =  11,1 Qq =  22,1 Qq =  33,1 Qq =  

k=2 30,2 Qq =  41,2 Qq =  52,2 Qq =  63,2 Qq =  

k=3 60,3 Qq =  71,3 Qq =  82,3 Qq =  93,3 Qq =  

k=4 90,4 Qq =  101,4 Qq =  112,4 Qq =  ... 

nk = 4

nk+1 = 4

nN = 5

Division of Data Points

qk,i

qk,0

qk,nk = qk+1,0

uk,0 = 0

uk,nk = 1

qk,i-1

Data Point, qk,i

Chord Length, ||qk,i - qk,i-1||2

Segment k=1

Y

X

uk,i

uk,i-1 

...
u,

 S
pl

in
e 

P
ar

am
et

er

Chord Length (Euclidean 
distance)

nk+2 = 4

 
Figure 3-3. Division of data points and computation of spline parameter values for each 

data point (p = 3, n = 4). 
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Piegl and Tiller [5], as illustrated in Figure 3-3. Let iku ,  represent the spline parameter for 

the ith data point in the kth segment. Here, 2|||| ⋅  denotes the Euclidean distance between two 

data points (i.e. chord length), and kd  is the sum of the chord lengths in the kth segment. 

Also, 1+kn  is the number of control points in the kth segment. 

∑
=

−−=
kn

i
ikikkd

1
21,, |||| qq

  

00, =ku
      

1, =
knku

 

1,,1,
|||| 21,,

1,, −=
−

+= −
− k

k

ikik
ikik ni

d
uu K

qq

    

(3.4)

Then using the u  values in the chord length parameterization, knot vectors, kU , are 

constructed for each segment based on an averaging method which is also described by Piegl 

and Tiller [5], which reflects the distribution of data points in the segment. The first and last 

p + 1 knots are assigned zero and one, respectively. There are m + 1 knots in total, where 

pnm += . The interior knots are obtained by averaging u  values with the formula in 

Equation (3.5). An example of calculating the jth knot is illustrated in Figure 3-4. 

0,0, === pkk uu L
   

1,, ===− mkpmk uu L
 

1,...,1,1 1
,, −+== ∑

−

−=
k

j

pji
ikjk npju

p
u

    

(3.5)

Additionally, weights can be assigned to the unknown control points. For simplicity all 

weights are set to one, which reduces Equation (3.3) to a nonrational B-spline expression as 

follows: 

uk,0 = ... = uk,p = 0 uk,j

uk,j-p+1uk,j-p uk,j-p+2 = j-1

compute average to get uk,j

Considering p=3, j=p+2:

1 = uk,m-p = ... = uk,m

First p+1 knots: Last p+1 knots:
...

u 
Parameter Spline

j    knotth

 
Figure 3-4. Sample calculation of the jth knot in a knot vector (p = 3, n = 5). 
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 The final step is to determine the optimal locations of the control points such that the 

Euclidean distances between the data points and the sample points on the NURBS curve are 

minimized, subject to boundary conditions between segments. Using the computed knot 

vectors, kU , B-spline basis functions are evaluated at each spline parameter, iku , , and 

substituted into Equation (3.6) to generate curve point predictions that correspond to the data 

points. Since x, y, and z coordinates are independent of each other, a system of linear 

equations is created for each coordinate axis. Then, minimizing the errors in each axis 

minimizes the Euclidean distance between the predicted, ik ,q̂ , and actual, ik ,q , data points. 

For illustration, the constrained optimization problem is formulated for the x-axis. Similar 

formulations can be constructed for the y and z axes simply by replacing occurrences of x 

with y and z, respectively.   

Let xkq̂  represent the x-axis coordinate predictions for the data points in the kth segment, 

kφ is the regressor matrix composed of B-spline basis function evaluations, and xkp  is a 

vector of the unknown x-axis coordinates of the control points in the kth segment. Note that 

the regressor matrix is the same for the y and z axes as well. Aggregating all of the x-axis 

coordinate predictions in the first (k = 1) NURBS segment results in the following system of 

equations: 
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For all other segments (k > 1), the first data point coincides with the last data point of the 

previous segment. Equivalently, the first control point coincides with the last control point of 

the previous segment, which naturally enforces 0G continuity between the segments. 
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Therefore, all subsequent segments can drop the first data point from the formulation as 

follows: 
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Aggregating the equations from all segments results in the following system of equations: 
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Since the total number of unique control points equals the number of data points, which 

is M +1, the regressor matrix is a square block diagonal matrix with dimensions M +1 x M +1. 

The error between the actual x-axis coordinates xQ  and the predicted x-coordinates xQ̂  

is:  

xxxxx ΦPQQQe −=−= ˆ
 

(3.10)

The objective function to be minimized is: 

)()(
2
1

xx
T

xxx
T

xxJ ΦPQΦPQee −−==
 

(3.11)

Next, the optimization problem is constrained by position, tangent and curvature 

continuity constraints at the toolpath's start and end points as well as the segment junctions. 

To achieve position 0G  continuity at NURBS segment boundaries, the first control point 

must equal the last control point of the previous segment. Since this constraint has already 

been incorporated into the formulation of the regressor matrix, it is not required to include 

these equations in the constraints. However position constraints at the start and end of the 
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toolpath must be imposed such that the first and last control points of the toolpath are equal 

to the first and last data points, respectively. 

321

M

444 3444 21
L

L

43421

x
x

N
xN

x

nxN

x

q
q

P
Lξ

p

p

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡ 1

,

0,1

)0()0(

1000
0001

 (3.12)

Tangent and curvature continuity require that the derivatives with respect to arc-length, s, 

evaluated at the segment boundaries must be equal. 
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 Since chord length parameterization was employed to obtain the u  values and knots in 

the knot vectors, the spline parameter, u, is generally not equal to the arc-length, s. Hence, 

duds ≠ . Moreover, each segment has a different parameterization since the chord lengths 

are not uniform throughout the entire toolpath. A general approach to satisfy Equation (3.13) 

is to use beta-constraints, which were derived in Section 2.3. Equation (2.4) serves as the 

mathematical basis for formulating the tangent and curvature continuity constraints at the 

junctions of segments with different parameterizations. First and second order beta-

constraints at the k-1th and kth segment boundary are expressed in Equation (3.14).  
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(3.14)
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Beta values, 1β  and 2β , are scalar shape parameters that influence how adjacent 

segments join smoothly. Note that by setting 11β =  and 02β = , Equation (3.14) reduces to 

first and second order parametric continuity constraints, which are normally used in arc-

length parameterization methods. However, since the parameterization is not with respect to 

the arc-length, imposing pure parametric continuity constraints can result in unwanted 

oscillations in the fitted curve, as illustrated in Figure 3-5. In comparison, imposing 

geometric continuity constraints with varying beta values result in a smooth curve without 

oscillations. Beta values are chosen such that segments join smoothly without oscillations. 

Each segment is assigned its own shape parameters. For 1G  continuity, the first derivative 

vector evaluated at the start point of the kth NURBS segment must be a positive multiple, 1β , 

of the first derivative vector evaluated at the end point of the previous segment. Let )()1( ukC  

represent the first parametric derivative of the kth segment. Then the first derivative beta 

constraint can be written as:   

01β),0()1(1β0 1
)1()1(

11 >−= −−− kkkk CC
 

(3.15)

Similarly, the beta constraint for 2G  continuity states that a linear combination of the 

second derivative vectors evaluated at the boundary point of the k-1th and kth segments is a 

multiple, ,2β  of the first derivative vector of the k-1th segment. Let )()2( ukC represent the 

0.6Ck-1(1) = Ck(0)‘ ‘

0.6Ck-2(1) = Ck-1(0)‘ ‘

2Ck(1) = Ck+1(0)‘ ‘

Ck-1(1) = Ck(0)‘ ‘

Ck-2(1) = Ck-1(0)‘ ‘

Ck(1) = Ck+1(0)‘ ‘

Y

X

Tangent Vector

Control Point, Pk,i

at, Ck(0)

at, Ck(1)

 
Figure 3-5. Effect of tangent beta-constraint value, β1, on curve fitting. 
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second parametric derivative of the kth segment. The second derivative beta constraint can 

then be expressed with the following equation: 

)0()1(1β)1(2β0 )2()2(
1

2
1

)1(
11 kkkkk CCC −+= −−−−

 
(3.16)

Satisfying these constraints ensures that the segments are geometrically continuous at 

segment boundaries, despite differences in the parameterizations between adjacent segments. 

A rule of thumb that works well in selecting beta parameters is to use the ratios of the 

summed chord lengths, which was denoted as  kd  in Equation (3.4), for 1β  and then setting 

2β  to zero. That is, 

02β,1β 1
1

1 == −
−

− k
k

k
k d

d

 
(3.17)

As illustrated in Figure 3-6, if data points are clustered close together, then the tangent 

vector should be correspondingly shorter, and if data points are spread out, then the tangent 

vector should be correspondingly longer. However, some trial and error may be necessary to 

reduce oscillatory behaviour in the fitted spline. Using a ratio of knot spans is another option, 

but the results are not always predictable because the parameterizations are normalized to be 

between zero and one. In general, a ratio based on the chord lengths is used in this thesis, and 

manually adjusted as necessary. 

To construct the linear equations for the tangent and curvature boundary conditions, first 

and second order beta-constraints are generated for each segment boundary. First, the lth 

Division of Data Points

Data Point Y

XChord

dk

dk-1

Ck-1(1)Ck(0) =
Segment k-1, Ck-1

Segment k, Ck

...

...

‘‘
dk

dk-1

Tangent Vectors:

 
Figure 3-6. Rule of thumb to calculate tangent beta value, β1. 
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derivative of the kth segment can be obtained by computing the derivatives of the B-spline 

basis functions recursively with Equation (3.18).  The first derivative B-spline basis functions, 

3.iN ′ , are illustrated in Figure 3-7.  
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The parametric derivative vectors are thus calculated as a linear combination of the 

control points, as show in Equation (3.19). Using Equations (3.15) and (3.19), the tangent 

continuity constraint between the k-1th and kth segment can be expressed with Equation 

(3.20). Note that for all subsequent constraint equations that involve the k-1th and kth 

segments, if )1(
, piN  is evaluated at one, then it is computed with the k-1th knot vector, 1−kU . If 

)1(
, piN  is evaluated at zero, then it is computed with the kth knot vector kU . 
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Figure 3-7. Evaluation of the first derivative B-spline basis function (p = 3). 
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If the toolpath is closed, then it may be desirable to also include a tangent continuity 

constraint at the start and end of the toolpath. In this case, the B-spline basis functions, 

)0()1(
, piN , are evaluated with the first segment's knot vector, while )1()1(

, piN  are evaluated with 

that of the last segment. The following equation can be inserted into the constraints:  
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Aggregating all the tangent 1G  continuity constraints into one matrix gives: 
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There are 1−N  segment boundaries. Hence there are 1−N  tangent constraints and one 

optional constraint for closed toolpaths, which is marked with the curved brackets.  

Similarly, the curvature continuity constraint matrix is formulated with Equations (3.16) 

and (3.19). The curvature continuity constraint at the k-1th and kth segment boundary can be 

expressed with the following equation: 
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For a closed curve, the curvature continuity constraint at the start and end points yields 

the equation: 
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Aggregating all the curvature continuity constraints and the optional closed loop 

constraint into one matrix gives: 
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The resultant constraint equations are: 
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Hence, the x-axis coordinates of the unknown control points, xP , are obtained by 

solving the following constrained linear quadratic optimization problem: 
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2
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(3.27)

For an N-segment toolpath, there are 2 position constraints, 1−N  tangent constraints 

and 1−N  curvature constraints, and an optional 2 more constraints if the toolpath is closed. 
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The total number of constraints is thus 2N(+2), where the number in parentheses represents 

the additional closed toolpath constraints. Using Lagrange multipliers, 

( )
T

N ]λλλ[ 2210 += LΛ , the augmented objective function is constructed as: 
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1minmin
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(3.28)

Differentiating Equation (3.28) with respect to xP and Λ , then setting the partial 

derivatives to zero yields the linear system of equations: 
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(3.29)

Solving the linear system in Equation (3.29) yields the x-axis coordinates of the 

unknown control points. Y and z coordinates are obtained by replacing the values of xP , xQ , 

and xξ , accordingly. The optimally placed control points, along with the computed knot 

vectors and weights, define an N-segment NURBS toolpath which is subsequently 

interpolated at the control loop sampling frequency to generate the toolpath reference 

trajectory.  

3.3 NURBS Toolpath Interpolation 

3.3.1 Segment Arc-length Calculation 
For the interpolator to realize the motion smoothly, it is important to calculate the arc-

length of each segment accurately. An inaccurate estimate for the arc-length will result in 

either under- or over-shooting the desired end point, thus causing trajectory discontinuities 

between segments. The total segment arc-length is an integration of infinitesimally small arc-

lengths, ∫= dsL . Using Pythagoras' theorem, ds is the hypotenuse of infinitesimally small 

displacements in the x, y and z directions. Differentiating with respect to the spline parameter, 

u, the arc-length differential can be expressed as follows: 
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(3.30)
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Thus, the total arc-length is formulated as follows: 

buaduufduuzuyuxL
b

a

b

a
≤≤=′+′+′= ∫∫ ,)()()()( 222

 
(3.31)

There currently exists no analytical solution for Equation (3.31). However, using 

Simpson's rule with an adaptive bisection technique, the arc-length can be calculated 

numerically within a specific tolerance of its true value. This procedure was also employed 

by Lei et al. [18]. First, an approximation of the arc-length is performed by evaluating the 

integrand, )(uf , at both end points of the spline parameter interval, which is denoted as 

],[ ba , and its midpoint ( c ), and applying Simpson's rule to obtain the arc-length estimate 

),( bal . The midpoint is calculated as 2/)( bac += . The step size is 2/)( abh −= . 

( ))()(4)(
3

),(:' bfcfafhbalRulesSimpson ++=
 

(3.32)

Next, the interval ],[ ba  is split into two equal sized intervals, denoted as ],[ 11 ba  and 

],[ 22 ba , and Simpson's rule is applied on both subintervals to obtain the lengths ),( 11 bal  and 

),( 22 bal . Given a specified tolerance, ε , if the condition in Equation (3.33) is satisfied, then 

the approximation is within the given tolerance of the true arc-length.  

ε<−+ 10/|),(),(),(| 2211 balbalbal
 

(3.33)

A proof of this statement is provided by Mathews and Fink in [38]. If the condition is 

not satisfied, then the subintervals are further refined by dividing them into two, halving the 

tolerance value, and reapplying Simpson's rule. This procedure iterates until all subintervals 

satisfy the tolerance, which is guaranteed to occur in a finite number of subdivisions, 

assuming that the fourth derivative of the integrand, ),()4( uf  is continuous over the interval 

],[ ba  [38]. Each refinement reduces the error by approximately a factor of 1/16, as shown in 

[38]. The total arc-length is calculated by summing up the subinterval lengths. Moreover, a 

cumulative summation of the subinterval lengths is also performed, in order to produce the 

spline parameter and arc-length pairs ),( ii su . In this notation, i  is an integer value between 

zero and the total number of subintervals, is  is the sum of the arc-lengths up to and including 
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subinterval i , and iu  is the corresponding spline parameter value. ΣN  is the number of 

points used to numerically integrate the segment's arc-length. These points are used in fitting 

the feed correction polynomials.  

3.3.2 Feed Correction Polynomial 
In general, NURBS toolpath parameterization does not yield a perfectly arc-length 

parameterized curve, which results in unwanted fluctuations in the feedrate, (i.e. tangential 

velocity), when the spline parameter is interpolated at constant increments. Feedrate 

fluctuations cause unsmooth tool motion, which causes visible feed marks on the machined 

part. Moreover, small discontinuities in the tangential velocity are magnified in the 

acceleration and jerk profiles. High acceleration and jerk may result in saturation of the 

motor actuators and excitation of the machine tool's structural modes, which have the effect 

of degrading the tracking performance. Therefore, feedrate fluctuations should be avoided. In 

order to correct this problem, a scalar valued function, )(sfu = , is employed to map the 

desired arc displacement s  to the correct spline parameter u . In this work, this function is 

referred to as the feed correction polynomial. Lei et al. [18] employed a similar 

reparameterization scheme using cubic Hermite splines. Here, a 7th order polynomial is used 

a) Feed Correction Polynomial, u = f(s)
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Figure 3-8.  a) Feed correction polynomial fitting and comparison of its analytical and 

numerical derivatives. There are 8 polynomials. b) Mean squared error (MSE) of curve 
fit for each polynomial. 
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to approximate the ),( ii su  data, as proposed in [10]. A 7th order polynomial is chosen such 

that boundary conditions on the position, and first and second derivatives at the start and end 

points of the function can be imposed, which requires at the least a 5th order polynomial. The 

extra two degrees of freedom are to better approximate the data without introducing 

polynomial "wiggle". However, in certain cases it was found that a single 7th order 

polynomial was insufficient to capture the relationship between the spline parameter and the 

arc displacement, and results were sometimes completely erroneous. It was noticed that, in 

general, when large changes in the spline parameter only result in small changes in the arc 

displacement, the curve fitting would run into numerical instability issues. Rather than 

increasing the order of the polynomial, it was found that multiple feed correction 

polynomials could approximate the relationship better. As an extension to the earlier work in 

[10], this chapter presents a procedure to connect multiple 7th order polynomials while 

maintaining first and second derivative continuity throughout the curve fitting, as illustrated 

in Figure 3-8. Segment 's polynomial is used to calculate the spline parameter for arc 

displacements in the interval ],0[ 1ps ; segment 's polynomial is used to obtain the spline 

parameter for arc displacements in the interval ],[ 21 pp ss , and so on. When a single curve 

fails to achieve an acceptable value for the mean squared error (MSE) of approximation, then 

the data points are split in half and two curves are fitted. It was found that splitting the point 

data and fitting multiple curves to them reduced this error. 

To start, a single curve is approximated to the ),( ii su  data in a least squares sense. The 

feed correction polynomial has the form: 
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(3.34)

In order to avoid ill-conditioning, the arc-length data ],,[
Σ0 Nss K=s  is normalized to 

be between 0 and 1, by defining )/()(σ 00 Σ
ssss Nii −−=  for Σ,,1,0 Ni K= , thus 

]1,σ,,σ,0[ 11 Σ−= NKσ . Hence, the feed correction polynomial and its derivatives, in terms of 

normalized variables and coefficients, are obtained as follows: 
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The spline parameter predictions of ]ˆ,,ˆ[ˆ
Σ0 Nuu K=u , calculated with the feed correction 

polynomial, are stacked together in matrix form, as shown in Equation (3.36). Here, Φ  

denotes the regressor matrix, and θ  is the vector of coefficients. 

{
θΦu

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

α
α

α
α

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

σσσσσσσ
σσσσσσσ

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

7

6

1

0

2
2
2

3
2

4
2

5
2

6
2

7
2

1
2
1

3
1

4
1

5
1

6
1

7
1

ˆ

2

1

0

11111111

1
1
10000000

ˆ

ˆ
ˆ
ˆ

M

4444444 34444444 21

MMMMMMMM

321

M

Nu

u
u
u

 (3.36)

Zero, first, and second order boundary conditions are imposed on the feed correction 

polynomial, in order to preserve continuity between the connecting segments. The first and 

second order derivatives are evaluated at the boundary points with the expressions of su  and 

ssu , obtained by applying the chain rule: 
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(3.37)

Denoting the 1st and 2nd derivatives evaluated at the start and end points ( initu  and 
finalu ) using Equation (3.37) as init

su , init
ssu , final

su , and final
ssu , and 0Σ

Δ sss N −= , the 

resulting zero, first, and second order derivative constraints can be written in matrix form as: 
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Using the method of Lagrange multipliers, it can be shown that the constrained 

optimization problem, which minimizes the squared error )()( ΦθuΦθuee −−= TT , such 

that Lθξ = , results in the system of linear equations in Equation (3.39). This result was 

previously derived in Equations (3.27)-(3.29): 
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Above, T]λ,,λ[ 50 K=Λ  is the vector of Lagrange multipliers. Solving Equation (3.39) 

for θ  yields the normalized coefficients iα , which minimize the error between the predicted 

and true spline parameter values. If 00 =s , then the original coefficients iA  in Equation (3.34) 

are solved by de-normalizing the iα  coefficients, resulting in 7
00 Δ/α sA = , 

6
11 Δ/α sA = , …, 77 αΑ = . Otherwise the original coefficients are obtained by substituting 
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Δ
σ 0  into the normalized feed correction polynomial in Equation (3.35), as follows:  
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(3.40)

Expanding Equation (3.40) and grouping like terms yields the following expressions for 

the coefficient of each power term: 
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It can be seen that the numerical values in front of the normalized coefficients are in fact 

entries of Pascal's triangle with alternating signs, which is a result of the binomial expansions 

of  nss )( 0−  for 7,,2,1 K=n . A generalized formula for the de-normalized coefficients, iA , 

is derived and written in Equation (3.42). Here, n  is the degree of the polynomial and r  is 

the coefficient subscript.  
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(3.42)

After obtaining the de-normalized feed correction polynomial, the mean squared error 

(MSE) between the true and predicted spline parameter values (i.e. iu  and iû ) is calculated 

using Equation (3.43) and checked against a specified tolerance MSEε . If the tolerance is 

violated, then the ),( ii su  points are split into two sets of the same size and a spline is fit to 

each set with the aforementioned approach and checked against the MSE condition. ΣN  is 

the number of points used in the curve fitting process for each polynomial, which decreases 

as the data points are subdivided. 
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The division of the point data terminates when the feed correction polynomials satisfy 

Equation (3.43), or when the number of points in the fitting set is equal to the order of the 

polynomial. The resulting polynomials can then be embedded into the NC code for real-time 

feed correction during NURBS interpolation. 

3.4 Simulation Results 

To demonstrate the effectiveness of the NURBS toolpath parameterization and 

interpolation scheme, two example toolpaths are used. Toolpath 1 is generated from the fan-

shaped spline data points, obtained from [9] with 150% scaling. Cubic NURBS segments (p 

= 3) with 6 control points (n = 5) are fitted to the data points with 2G  continuity including 

the closed loop constraints, as illustrated in Figure 3-9. The last segment has 9 control points. 

The data points and beta parameters used in the curve fitting and tangent and curvature 

continuity constraint equations are listed in Appendix A, along with the resulting knot 

vectors and control points from the toolpath parameterization. 
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Figure 3-9. 17-segment NURBS toolpath 
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The fan-shaped toolpath is interpolated at a sampling frequency of 1000 Hz with a jerk 

limited constant feedrate profile of 50 mm/s. Feed generation will be explained in Chapter 4. 

The arc-length of each segment is calculated with a tolerance of 121ε −= e . The required 

number of feed corrections polynomials per segment, to achieve an MSE tolerance of 

101ε −= eMSE , varies between five and twelve.  

Interpolation with the feed correction polynomial is compared to natural interpolation in 

Figure 3-10 to show that the parameterization method generally doesn't produce arc-length 

parameterized curves and that reparameterization with the feed correction polynomial 

successfully minimizes unwanted feedrate fluctuations.  

The resultant feedrate, kŝ& , is calculated with the numerical derivatives of the interpolated 

x-and y-axis position commands, x̂&  and kŷ& , respectively, using Equation (3.44). sT  is the 

sampling period and k is the sample index between 2 and the number of samples, tN  minus 

one.  
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(3.44)

The feed profile of the natural interpolation exhibits a maximum feed of 68.98 mm/s and 

a minimum of 33.79 mm/s during constant feedrate command. This translates to 

approximately 32 % to 37 % feed fluctuation. The maximum feed in the interpolated profile 

with feed correction is 50.046 mm/s, and the minimum is 49.942 mm/s. By applying the feed 

correction polynomial, maximum feed fluctuation is reduced to between 0.09 % and 0.11 %.  

Acceleration and jerk profiles are also computed by numerical differentiation, similar to 

Equation (3.44), which reveals discontinuities that occur in the final axis position commands. 

The minimum and maximum acceleration and jerk values that occur in the interpolated 

profiles are listed in Table 3-2. Natural interpolation yields acceleration values that are 

approximately an order of magnitude higher than the interpolation with feed correction. Jerk 

values are two orders of magnitude greater. 



Chapter 3. NURBS Trajectory Generation 41 

  

 

Table 3-2. Toolpath 1 - comparison of min/max axis acceleration and jerk values. 
Acceleration [mm/s2] Jerk [mm/s3]  

X Axis Y Axis X Axis Y Axis 

Natural 
Interpolation 

-1.429 x 104 
0.9083 x 104 

-1.562 x 104 
1.029 x 104 

-7.194 x 106 
6.946 x 106 

-7.867 x 106 
7.391 x 106 

With Feed 
Correction 

-0.1088 x 104 
0.1202 x 104 

-0.1199 x 104 
0.1005 x 104 

-5.742 x 104 
3.602 x 104 

-3.363 x 104 
5.624 x 104 
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Figure 3-10. Toolpath 1 - comparison of NURBS interpolation without and with feed 
correction. 
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Toolpath 2 is generated from CAD data of a tibial-plateau (lower knee joint) implant 

model with 200% scaling and ball end tool offset compensation applied. The closed toolpath 

consists of 67 cubic NURBS segments (p = 3) with seven control points each (n = 6). The 

command feedrate is 20 mm/s. Figure 3-11 shows the NURBS toolpath as well as the 

resultant feedrate along the toolpath for interpolation with and without the feed correction 

polynomial. In comparing the feedrate profiles, it is clear that feed correction plays a 

significant role in ensuring that the motion along the toolpath is smooth.   

The minimum feed encountered in the feed profile with feed correction is 19.32 mm/s. 

However, this is due to the fact that the feed is too high to track the given geometry, which is 

labeled as a sharp corner in the vicinity of mm 10=x  and mm 25−=y  in Figure 3-11, and 

occurs during the time interval of 3.389 s to 3.395 s. Omitting this interval from the analysis, 

the minimum feed becomes 19.92 mm/s, which is a 0.41% decrease from the desired 

command feed, which is 20 mm/s. The maximum feed of the interpolated profile with feed 

correction is 20.066 mm/s, which is only a 0.33 % feed fluctuation. On the other hand, the 

maximum value in the feed profile, interpolated with uniform parameter increments, is 28.43 

mm/s, which is approximately 42% greater than the command feed. Moreover, the minimum 

feed that was encountered is 16.45 mm/s, which is 18 % less.  

A comparison of the minimum and maximum acceleration and jerk values is also 

provided in Table 3-3. The feed correction reduces the worst-case acceleration values by 

approximately half. Consequently, the jerk magnitudes are an order of magnitude lower, 

compared to interpolation without the feed correction polynomial. 

Table 3-3. Toolpath 2 - comparison of min/max axis acceleration and jerk values. 
Acceleration [mm/s2] Jerk [mm/s3]  

X Axis Y Axis X Axis Y Axis 

Natural 
Interpolation 

-3.022 x 103 
2.716 x 103 

-4.105 x 103 
4.285 x 103 

-1.518 x 106 
1.592 x 106 

-2.167 x 106 
2.273 x 106 

With Feed 
Correction 

-1.420 x 103 
0.9491 x 103 

-1.152 x 103 
1.455 x 103 

-0.7955 x 106 
0.1866 x 106 

-0.2808 x 106 
0.7361 x 106 
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3.5 Conclusions 

This chapter has provided a basic mathematical framework for NURBS toolpath 

parameterization and interpolation. It has presented two problem formulations and solutions 

which utilize Lagrange Multipliers for solving two constrained curve fitting problems - the 

first to solve for NURBS control points, and the latter to obtain the coefficients of feed 

correction polynomials. The toolpath parameterization method guarantees that position 0G , 

tangent 1G , and curvature 2G  continuity is preserved at segment boundaries by utilizing 

beta-constraints. However, in general the toolpath parameterization presented here does not 

generate arc-length parameterized curves, which results in large feedrate fluctuations if the 

splines are interpolated with uniform parameter increments. In order to address this problem, 

the NURBS toolpaths are reparameterized with respect to arc-length with the feed correction 

polynomial prior to interpolation. This strategy minimizes unwanted feedrate fluctuations, 

regardless of the parameterization of the NURBS segment. The resultant feed profile of the 

interpolated trajectory with feed correction shows a significant reduction in feedrate 

fluctuations compared to the feed profile where feed correction was not applied.  

One major advantage of spline toolpaths over conventional linear and circular toolpaths is 

the achievable continuity between segments which enables smooth continuous motion 

throughout the toolpath without having to come to a complete stop between segments. Rather, 

the feedrate can be continuously increased or decreased as deemed necessary by the toolpath 

geometry and dynamics of the machine tool, without incurring large acceleration or jerk in 

the axis feed drives.  

The practicality and effectiveness of the proposed interpolation scheme has been 

demonstrated in simulation results. Experimental results will be presented in the following 

chapters. In Chapter 4, a generalized framework for continuous feedrate modulation is 

presented, which will be followed by the incorporation of a heuristic feed optimization 

strategy for overall NURBS trajectory generation in Chapter 5. 

 



  

45 

Chapter 4 

Jerk Limited Feedrate Modulation 

4.1 Introduction 

In this chapter, a continuous feedrate modulation strategy for an N-segment toolpath is 

presented. Here, the proposed strategy seamlessly stitches multiple S-curve type feed 

transitions together as shown in Figure 4-1, to describe smooth motion along the toolpath. 

The strategy assumes that the toolpath is comprised of two or more segments. Jerk limited 

feed profiling for a single segment was presented by Erkorkmaz and Altintas [16]. 
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Figure 4-1. Feed modulation demonstrated with a 7-segment spline toolpath example. 
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Considering that the jerk profile is comprised of piecewise constant values, the acceleration 

profile is composed of linear and constant (zero and non-zero) functions which exhibit a 

characteristic trapezoidal profile. When the acceleration is zero, feed is held constant and the 

displacement increases linearly. When the acceleration is constant at a non-zero value, the 

feedrate is either linearly increasing or decreasing, and the displacement function is parabolic. 

When the acceleration function is linear, with a slope prescribed by the jerk value, the 

feedrate is then parabolic and the displacement is cubic. 

The formulation of the kinematic equations is presented in Section 4.2. To ensure 

smooth transitions between piecewise functions within a segment and across segment 

boundaries, kinematic compatibility conditions are derived and presented in Section 4.3. In 

Section 4.4, implementation details of the feed modulation strategy are discussed. 

Experimental results are illustrated in Section 4.5 and conclusions are presented in Section 

4.6. 

4.2 Feed Profile Formulation 

The ability to modify the feed on the fly allows the machining process to slow down for 

high curvature segments whilst maintaining high speeds throughout the rest of the toolpath. 

Here, the initial (1st), middle (kth), and final (Nth) segment profiles are defined in order to 

establish a generalized framework for N  segments, as shown in Figure 4-2, Figure 4-3, and 

Figure 4-4. The initial segment is defined at the start of the toolpath where the initial feedrate 

equals zero. As shown in Figure 4-2, a full acceleration transient is required to achieve the 

desired feedrate ( 1F ), which is realized in sub-segments , , and . Throughout the feed 

motion, the acceleration transients from the desired feed of one segment to that of the next 

are evenly distributed between consecutive segments. Therefore the initial segment also 

consists of a second partial acceleration transient that achieves half of the feed transition to 

the next segment's feed, in sub-segments  and . This results in the boundary feed to be 

the average of the desired feed values between two consecutive segments, as is the case for 

the final feed value 2/)( 21 FFfe +=  at the end of the 1st feed segment. This mathematical 

relationship will be verified in the following section. 
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A middle segment, which is illustrated in Figure 4-3, is defined by non-zero start and end 

feeds, and consists of two partial acceleration transients: the end of the feed transition from 

the previous segment, and the start of the feed transition into the next one. The final segment, 

shown in Figure 4-4, concludes the motion along the toolpath with a final feed (i.e. tangential 
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Figure 4-4. Final (Nth) segment profile. 
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velocity) value of zero. Its first acceleration transient is partial (sub-segments - ), while 

its second acceleration transient is a full trapezoid that brings the motion to a full stop (sub-

segments - ). Based on the illustrated piecewise constant jerk profiles, the acceleration, 

feed, and displacement profiles can be obtained by performing integration with respect to 

time. 

Mathematically, given the initial conditions at time it  ),15,,1,0( += Ni K  the tangential 

acceleration )(ts&& , feedrate )(ts& , and displacement )(ts  profiles can be obtained by 

integrating the tangential jerk profile )(ts&&&  as follows:  

∫∫∫ +=+=+=
t

t
i

t

t
i

t

t
i

iii

dststsdststsdststs τ)τ()()(,τ)τ()()(,τ)τ()()( &&&&&&&&&&&&

 
(4.1)

Above, τ  is the integration variable that represents time. In the following, kinematic 

equations are formulated with piecewise functions for the initial (1st), middle (kth), and final 

( N th) segments.  

The jerk profiles in Figure 4-2, Figure 4-3, and Figure 4-4 can be written as follows:  
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Above, t denotes absolute time and 2521 ,,, +Nttt K  are time boundaries for each phase 

(i.e. sub-segment) in the entire profile. The initial and final segments have six phases of 

motion while the mid-segments only have five. Each segment has two acceleration transients 

in its motion profile that are either full or half trapezoids. kJ  and 1+kJ  are the jerk values for 

the first and second acceleration transients, respectively, in spline segment k  for 

Nk ,,2,1 K= . If the acceleration transient produces a change in feedrate to a higher speed, 

then kJ  is positive. Otherwise, kJ  is negative. 

Integrating Equations (4.2)-(4.4) with respect to time, the acceleration profiles can be 

obtained as shown in Equations (4.5)-(4.7). The constant acceleration values for the first and 

second acceleration transients of the kth segment are denoted as kA  and 1+kA  respectively, 

Here, dτ  is a relative time parameter that starts at the beginning of the dth phase, where 

6,,2,1 K=d  for the first and Nth segments, while 5,,2,1 K=d  for all middle segments 

( 12 −≤≤ Nk ). 
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The feedrate profiles are obtained by integrating Equations (4.5)-(4.7) with respect to 

time as shown in Equations (4.8)-(4.10). sf  denotes the start feed, kF  is the desired feed of 

the kth segment to be achieved by the end of the first acceleration transient, and def  is the 

feedrate reached at the end of the dth phase. kjT , , kaT , , and kfT ,  are the time durations of 

specific motion phases. The first subscript identifies the type of motion in the phase. For 

example, jT  refers to a non-zero jerk phase, aT  refers to a phase with constant non-zero 

acceleration, and fT  refers to the time duration of a constant feed phase. The second 

subscript identifies the segment to which the acceleration transient duration corresponds. For 

example, considering the kth segment, if the subscript is also k, this represents the 1st 

acceleration transient. Otherwise, if the subscript is k+1, then this corresponds to the 2nd 

acceleration transient. 



Chapter 4. Jerk Limited Feedrate Modulation 51 

  

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

+=<≤+

=<≤+

−+=<≤

+=<≤−+

+=<≤+

=<≤+

=

2
2,24565625

3454
2
524

2
1,11,123433

1,11232
2
31312

2
1,1121211

1
2
11

1

2
1,,τ

,,τ
2
1

2
1

,,

,,τ
2
1

τ
2
1

,,τ

0,0,τ
2
1

)(

jeee

eee

jjeee

aeee

jsee

ss

TJfftttAf

fftttJf

TJTAfftttf

TAfftttJAf

TJfftttAf

fttJf

ts&
 

(4.8)

( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

+=<≤+

=<≤+

−+=<≤

+=<≤−+

+=<≤+

=

++++

−+

−−

−−

−−−

2
1,134155514

23515
2
413

2
,,1215252

,12535
2
221

135451

2
1

,τ

,τ
2
1

2
1

,
2
1

,τ
2
1

τ

2,τ

)(

kjkeekkke

eekkke

kjkkjkeekke

kaksekkkke

kkskkks

k

TJfftttAf

fftttJf

TJTAfftttf

TAfftttJAf

FFftttAf

ts&
 

(4.9)

( )

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

+=

+=

=

−+=

+=

+=

⇒

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

≤≤−+

<≤+

<≤+

<≤

<≤−+

<≤+

=

++

++

−

++++

++

−+

−−

−−

−−

1,145

2
1,134

23

2
,,12

,1

1

2515
2
61615

155514

515
2
413

15252

2535
2
221

35451

2
1

2
1

2
1

2

,τ
2
1

τ

,τ

,τ
2
1

,

,τ
2
1

τ

,τ

)(

NaNee

NjNee

ee

NjNNjNee

NaNse

NNs

NNNNe

NNNe

NNNe

NNe

NNNNe

NNNs

N

TAff

TJff

ff

TJTAff

TAff

FFf

tttJAf

tttAf

tttJf

tttf

tttJAf

tttAf

ts&

 

(4.10)



Chapter 4. Jerk Limited Feedrate Modulation 52 

  

Finally, integrating Equations (4.8)-(4.10) with respect to time results in the following 

displacement profiles in Equations (4.11)-(4.13), where ss  is the start displacement, des  is 

the displacement reached at the end of the dth phase, and kfT ,  is the time duration of the 

constant feed phase for the k th segment. 
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Using the formulated kinematic equations, it is possible to derive expressions for the time 

durations during each phase based on the given values of jerk ,kJ  acceleration ,kA  feed ,kF  

and segment displacement length .kL  The expressions for kjT , , kaT , , and kfT ,  are 

summarized here. From the trapezoidal nature of the acceleration transient, the acceleration 

value kA  is equal to the area under the jerk block, which is equal to the jerk value kJ  

multiplied by the time duration of the jerk phase kjT , . Hence, the time duration of the 

constant non-zero jerk phases can be written as follows: 

k

k
kj J

A
T =,

 
(4.14)

The time duration of the constant non-zero acceleration phases, which are split in half 

where two adjacent segments connect (see Figure 4-1), can be obtained by integrating the 

area under the full trapezoidal acceleration transient. The area under the acceleration profile 

must be equal to the desired change in the feed profile. The feed at the start of the kth 

acceleration transient is 1−kF  and the desired feed to be reached by the end of the 

acceleration transient is .kF  Using Equation (4.9), the feed at the end of phase , ,2ef  is set 

to .kF  Hence, solving for the constant acceleration time duration yields the following 

expression: 
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(4.15)

Using Equations (4.14) and (4.15), it can be verified that the final feed value at the end 

of the 1st segment is indeed 2/)( 21 FFfe += . Using Equation (4.8), the feed at the end of 

phase  in Figure 4-2, can be expressed as: 

)(
2
1

2,2,21 aje TTAFf ++=
 

(4.16)

Substituting in expressions for 2,jT  and 2,aT  yields: 
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Simplifying Equation (4.17) gives 2/)( 21 FFfe += . The same process can be done for 

the kth segment. In general, the final feed of the kth segment is 2/)( 1++= kke FFf . 

 Finally, the time durations of the constant non-zero feed phases for the initial (1st), 

middle (kth) and final (Nth) segments are listed in Equations (4.18), (4.19), and (4.20). These 

equations are obtained by expressing the total travel distance in the 1st, kth and Nth segments 

using Equations (4.11), (4.12), (4.13) and setting them equal to the segment arc-lengths, ,1L  

,kL  and ,NL  respectively. Equations (4.8), (4.9), (4.10) are used to substitute in expressions 

for the end feeds of each phase. Lastly, expressions for kjT ,  and kaT ,  from Equations (4.14) 

and (4.15), respectively, are substituted in to express the constant feed time duration in terms 

of given feedrates, accelerations, jerks and segment arc-lengths. In these equations, kΔ  is 

defined as 1−−=Δ kkk FF . 
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Detailed mathematical derivations for the above expressions are provided in Appendix B. 

These derived expressions are used to assess the kinematic feasibility of the motion defined 

by the given jerk, acceleration, feedrate, and displacement values. 
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4.3 Kinematic Compatibility Conditions 

Kinematic compatibility conditions are derived based on the analytical expressions for 

the displacement, feedrate, acceleration, and jerk profiles, provided in the previous section. 

In this section, the resulting conditions are summarized. The maximum tangential 

acceleration and jerk limits are set by the process designer and are based on the machine's 

acceleration capabilities. Kinematic compatibility is defined as sufficient travel length to 

change the feedrate within the specified acceleration and jerk limits of the machine. If 

kinematic compatibility is possible, then the displacement, feedrate and acceleration profiles 

will be continuous, and the jerk profile will be limited. 

Given specified values for the control loop sampling period sT , the desired segment 

feedrates kF , where 0F  and 1+NF  are the initial and final feeds of the whole toolpath, and the 

acceleration and jerk magnitude limits, maxA  and maxJ  respectively, the acceleration values 

kA  are calculated. Then, feed transitions are checked against compatibility conditions, based 

on the segment travel length kL . If a condition is not satisfied, the violating feedrate value is 

modified to yield a kinematically compatible profile. The specified maximum jerk should not 

be larger than that which is achievable within the sampling period, given a maximum 

acceleration magnitude. Hence, the sign and magnitude of the jerk kJ  is calculated as: 

( ) ( )skkk TAJFFJ /,minsgn maxmax1 ⋅−= −
 

(4.21)

To achieve smooth feed transients, the appropriate acceleration magnitudes must be 

determined. The feed reached at the end of the first acceleration transient must equal the 

desired feed kF . The maximum allowable acceleration to transition from 1−kF  to kF ,  

assuming no constant acceleration phase, is found by setting the constant acceleration 

duration ( kaT , ) to zero in Equation (4.15). Capped by a specified maximum acceleration 

magnitude ,maxA  the acceleration kA  is determined with the following equation:  

( ) ( )( )kkkkkk JFFAFFA 1max1 ,minsgn −− −⋅−=
 

(4.22)
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The feed compatibility condition determines whether there is sufficient travel length in a 

segment to carry out the desired motion specified by the feedrates of three consecutive 

segments, 1−kF , kF , and 1+kF , their corresponding transition acceleration values, kA , 1+kA , 

and jerk values kJ , 1+kJ . The distance available for constant feed motion is denoted as kfL ,  

and can be found by subtracting the distance traveled during the first and second acceleration 

transients from the total segment length, kL . kfL ,  must be greater than or equal to zero. The 

resulting feed compatibility conditions for the initial (1st), middle (kth), and final (Nth) 

segments are summarized in Equation (4.23).  
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As defined earlier, 1−−=Δ kkk FF . 

4.4 Implementation Details 

As feed transitions are spread across segment boundaries, kinematic compatibility in a 

segment is affected by its adjacent segments. In order to ascertain whether kinematic 

compatibility is satisfied across the segment boundaries, the previous and next segments also 

need to be tested against the feed compatibility conditions stated in Equation (4.23). Smooth 

and continuous motion is achievable if all three consecutive segments satisfy these conditions. 

A forward traversal through the toolpath checks the compatibility of the desired feedrates, 

which can be provided by the NC programmer, or obtained through a feed optimization 

routine such as the one that is presented in Chapter 5. Under certain situations, a 
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kinematically compatible solution may not be achievable by simply modulating the 

commanded feed, acceleration, or jerk values. In such circumstances, the real-time 

interpolator needs to back-track through the planned feed values and perform adjustment to 

the earlier NC blocks, in order to yield a kinematically compatible feed profile for the current 

trajectory segment. Hence, a look-ahead buffer is implemented for this purpose as shown in 

Figure 4-5.  

When the desired feedrate of a segment provided by the NC programmer or an 

optimization routine is incompatible, a bisection search method finds a kinematically feasible 

feed efficiently. The feeds of the previous and next segment are either fixed or free, where 

free means that it is set equal to the feed of the current segment. In forward planning, the feed 

of the previous segment is fixed and the feed of the next segment is generally free. The 

exception is when the desired feed of the next segment is lower than the test feed midf , in 

which case the feed of the next segment is fixed at its desired level, 1+kF . Similar rules apply 

for backward planning in reverse. The range of the search space is bounded by zero at the 

bottom, and the desired feedrate kF  at the top. The search algorithm bisects the feed search 

space iteratively, as shown in Figure 4-6, until a feasible solution is found within a specified 

tolerance tolF . The number of iterations required to find the new compatible feed within the 

specified tolerance can be found with Equation (4.24). 

1)]/([log2 += tolk FFroundn
 

(4.24)
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Figure 4-5. Implementation of feed modulation strategy with a look-ahead window. 
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At each iteration, the test feed value is the bisected value, midf , of the search space 

defined by a low bound lowf  and high bound highf . midf  is tested against the kinematic 

compatibility conditions in Equation (4.23). If there is a violation, then midf  becomes the 

high bound of the next iteration's search space and the previous low bound remains the same. 

Otherwise, midf  becomes the new low bound. On the last iteration, if the last tested feed is 

feasible, then it becomes the new command feedrate, newkF , . On the other hand, if it is not 

feasible, then the new feedrate is the last feasible feed found in previous iterations. It is 

assumed that the search tolerance is smaller than the smallest feasible feed such that the new 

command feedrate is always greater than zero. 

The kinematically compatible feeds are passed through the feed generator to obtain arc-

length position commands at each control sample. These can be subsequently transferred to 

the real-time interpolator to generate individual axis motion commands using the NURBS 

interpolation strategy explained in Chapter 3. 

4.4.1 Look-ahead for Long Toolpaths 
A look-ahead window is sufficiently long if there is enough travel length to decelerate 

from the largest possible feed to zero, by using a series of trapezoidal acceleration transients 

as defined in Sections 4.2 and 4.3. An estimate for the number of segments that may be 

required can be obtained, given a maximum feed ,maxF  acceleration and jerk magnitudes, 
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Figure 4-6. Bisection search algorithm for a feasible feed. 
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and by assuming that each segment has a specified path length that is larger than a minimum 

value, .minL  The feed modulation framework facilitates a large deceleration in S-curve steps.  

Maximal feed change is realized by eliminating every other acceleration transient such that 

maximum acceleration occurs at every other segment boundary and zero acceleration occurs 

otherwise. An illustration of the deceleration process from maxF  to zero is provided in Figure 

4-7.  

 The resulting sequence of acceleration values is },,0,,0,,,0,,0,{ 1231 aaaaa ww K−  and the 

command feedrate sequence is }.,,,,,,,,{ 0112211 ffffffff www K−−  For example, wa  is the 

acceleration transition value to decelerate from wf  to .1−wf  The total number of segments in 

the look-ahead window is denoted as wN  and defined as .12 −= wNw  
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Figure 4-7. Deceleration from maximum feed to rest. 
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 In order to estimate the number of required segments for the look-ahead window, the 

feed steps in the deceleration profile shown in Figure 4-7 are computed iteratively until a 

value that is greater than the maximum feedrate is reached. Essentially the deceleration 

profile is calculated in reverse, starting at the right-most segment in the figure, which is 

denoted as segment . To start, a counter variable w  is initialized to zero and wf  is 

initialized to zero. The maximum allowable feed step, denoted as 1δ −−= www ff , is 

calculated. By considering the first three phases of the initial segment type illustrated in 

Figure 4-2, Equations (4.8) and (4.11) can be reduced to calculate the maximum reachable 

feed within a given path length constraint. Considering that the time duration of the constant 

acceleration phase is zero, the travel length by the end of the third phase )( 3es  can be 

expressed in terms of the initial feed value 1−wf , the acceleration transition value wa  and 

time duration of the jerk phase, jT . 

2
13 jwjwe TaTfs += −

 
(4.25)

Given a maximum jerk value maxJ  and substituting max/ JaT wj = , from Equation (4.14), 

into the above equation, yields a cubic equation in wa : 

2
max3max1

30 JsaJfa ewww −+= −
 

(4.26)

From the above equation, wa  can be solved using the Newton-Raphson method with 

maxA  as an initial guess. If 1=w , then es3  is set to minL . Otherwise, es3  is minL  multiplied 

by two (i.e. min2L ) to reflect that the acceleration transient occurs over two segment lengths. 

Then, rearranging Equation (4.15) as max
2

1 JaTaff wawww +=− −  with aT  set to zero, the 

maximum feed step wδ  in terms of the computed acceleration value and maximum jerk value 

can be obtained with the following equation:  

max

2
δ

J
aw

w =
 

(4.27)
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Finally, if the feed reached is greater than the maximum specified feed, that is if 

max1 δ Ff ww ≥+− , then the value of the counter variable is used to calculate the window size, 

which is .12 −= wNw  Otherwise, the counter variable is incremented by one and the 

procedure to calculate the next feed step is repeated with Equations (4.25), (4.26), and (4.27). 

The number of segments required to decelerate from a maximum feed of 150 mm/s 

within acceleration and jerk limits of 500 mm/s2 and 10,000 mm/s3, respectively, assuming a 

minimum travel length in each segment of 0.1 mm, is 22,501 segments.  

4.5 Experimental Results 

To demonstrate the effectiveness of the NURBS interpolation and continuous feed 

modulation strategy, surface machining tests were performed on a 3-axis router experimental 

setup illustrated in Figure 4-8. Drive parameter identification tests [39] were performed on 

the router to obtain control signal equivalent inertia, viscous damping, and Coulomb friction 

values for all three axes, which are listed in Table 4-1. The gantry design results in two axes 

in the x-direction which are labeled "Right" and "Left". Separate parameters were identified 

by assuming an independent relationship between the two axes, despite the fact that the 

identification data of the X axes were obtained simultaneously. The left X-axis appears to 

have lower control signal equivalent inertia and damping, and higher Coulomb friction 

compared to the right X-axis. The reason for this dissimilarity is perhaps due to the weight of 

the Z-axis which tended to operate closer to the right side of the gantry, simply because it is 

closer to the home position of (0,0,0). Thus, the perceived inertia would be greater on the 

right side rather than on the left.  
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Table 4-1. Identified control signal equivalent parameters of the experimental setup. 
Coulomb Friction,  dcoul  [V] 

Axis 
Inertia, m 
[V/(m/s2)]

Damping, b  
[V/(m/s)] Positive Negative 

X (right) 2.0409 39.9446 0.3270 -0.3206 

X (left) 1.6060 38.3927 0.4599 -0.4356 

Y 1.0803 30.7299 1.9078e-004 -3.3471e-004 

Z 2.5810 83.8100 0.2172 -0.2031 

Pulse Width 
Modulator

dSPACE 
Real-Time 
Controller

Host Computer

Router Control
Interface

download controller
and toolpath data

upload 
captured data

analog
control signal

digital 
encoder counts

triggering signal
for amplifier H-bridge

 
Figure 4-8. Experimental setup (4' x 8' router table).  



Chapter 4. Jerk Limited Feedrate Modulation 64 

  

The controller design was implemented in MATLAB Simulink, and subsequently 

downloaded to the real-time dSPACE controller, as shown in Figure 4-8. The router is 

controlled with adaptive sliding mode control [40] at a bandwidth of 16 Hz. The tuned 

sliding mode control parameters are listed in Table 4-2. The dSPACE controller sends 

control signals to the router's driver board through a control interface after a pulse-width 

modulator converts the analog signals to digital signals. The dSPACE captures encoder 

counts directly from the motors' rotary encoders to close the feedback loop. The encoder 

resolution for the X and Y axes is 1/384 mm (2.6 um) and for the Z axis is 1/960 mm (1.04 

um). The loop closure (interpolation) period was 1 ms.  Also, to counteract the force of 

gravity, a constant 1 V signal is applied to the Z-axis. 

Table 4-2. Tuned sliding mode control (SMC) parameters for the experimental setup. 

Axis 
λ 

[rad/s]
Ks  

[V/(rad/s2)]
ρ 

[V/(rad/s)]

X (right) 100 1 100 

X (left) 100 1 100 

Y 100 1 100 

Z 100 1 80 

 

A tibial-plateau (lower knee joint) implant model was machined out of wax with 200% 

scaling as shown in Figure 4-9. MasterCAM was initially used to generate the tool center 

points (TCPs), which define linear toolpath segments that are within the specified machining 

NURBS toolpath Machined PartCAD Model
Z

Y

X

0

40

-40

 Y
 A

xi
s 

[m
m

]

-20 20 X Axis [mm]  
Figure 4-9. Biomedical implant model to machined part. 
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tolerance of 25 um. A contour machining strategy was employed, which means that the 

toolpath consisted of X-Y contours at varying depths, for which the step down was specified 

as 0.5 mm. The NURBS toolpaths were generated from the CAD data in MasterCAM with 

ball end tool offset compensation, using the parameterization method presented in Chapter 3. 

A long length two-flute 3mm ball nose mill was used to machine the part. Given the axis 

velocity (150 mm/s), jerk (25,000 mm/s3) and control signal (5 V) limits, selection of the 

commanded feed values was realized using the heuristic feed optimization technique 

presented in [37], which is the predecessor of the method presented in Chapter 5.  

The feed motion profiles are shown in Figure 4-10. The velocity, acceleration and jerk 

profiles were calculated by taking the numerical derivatives of the position trajectory using 

Equation (4.28). Their smoothness indicates that the position trajectory was generated 

correctly without any unanticipated flaws or discontinuities. sT  is the sampling period, and k 

is the time step index, such that skTt =  for 11 −≤≤ tNk .  
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(4.28)

As can be seen in Figure 4-10, the kinematic profiles are smooth and limited in jerk in all 

axes, as originally planned. As a result the servo errors, defined as the difference between the 

reference position and the actual measured position (i.e. measref xx − ), in the two axes do not 

exceed 15 um, which is only in the order of 6 encoder counts while operating the router at its 

top speeds and acceleration. Smooth feed motion ensures that the machine is able to track the 

given reference trajectories. 
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Figure 4-10. Kinematic profiles and controlled contouring results for the sample 
NURBS toolpath. 
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4.6 Conclusions 

A generalized framework for feed modulation of an N-segment toolpath was developed 

and presented in this chapter. This framework is used to perform NURBS toolpath 

interpolation with continuous feedrate modulation. Smooth feed motion is ensured by the 

feedrate modulator, which utilizes analytically derived feed compatibility conditions to 

guarantee continuity in position, velocity, and acceleration profiles between neighboring 

segments. If the desired feedrate for a segment is kinematically infeasible, then a bisection 

search algorithm lowers the command feed to the highest feasible feedrate. Long toolpaths 

are handled by employing a look-ahead function in the feed modulator such that enough 

travel distance is available to bring the feed motion to a stop when needed. Hence, feedrate 

generation and trajectory interpolation are uninterrupted in the real-time CNC controller. The 

effectiveness of the proposed method has been demonstrated in machining a complex surface.  
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Chapter 5 

Feedrate Optimization 

5.1 Introduction 

In this chapter, a computationally efficient feedrate optimization strategy is developed for 

spline toolpaths with jerk-limited feed profiling. The technique combines analytically derived 

compatibility equations from Section 4.3, with a heuristic search method, which helps 

generate feed profiles with reduced cycle time while adhering to axis velocity, acceleration, 

torque, and jerk constraints. The feed optimization is integrated with the feed modulation 

strategy presented in the previous chapter. Using the S-curve function allows the optimized 

feed profiles to be implemented on most existing CNC’s. The proposed strategy yields 

shorter cycle time compared to the worst-case curvature approach [31], which is frequently 

used in industry, and converges faster than more elaborate gradient-based optimization 

techniques [32]. In the following, Section 5.2 presents the feedrate optimization problem and 

Section 5.3 presents the solution methodology of the newly developed optimization 

technique. The effectiveness of the new strategy is demonstrated in contour machining 

experiments in Section 5.4. The conclusions are summarized in Section 5.5.  

5.2 Problem Formulation 

The objective of feedrate optimization is to minimize the cycle time to machine a part, 

while preserving the desired contouring accuracy. In other words, the aim is to maximize the 

feedrate along the toolpath without compromising the quality of the final product. 

Considering an N-segment toolpath, where kT  represents the cycle time of the kth segment, 

the objective function can be expressed as a minimization of the total cycle time, as shown in 

Equation (5.1).  

)min(min 21
1

N
N

k
k TTTT +++=∑

=
L

 
(5.1) 
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Conversely, the objective function can also be written as a maximization of the feedrate 

for the kth segment, kF , where the feedrate of each segment is maximized individually as in 

Equation (5.2).  

NkFk ≤≤1,max
 

(5.2) 

The latter objective function means that if the tool is traveling at the maximum allowable 

feedrate for each segment, then the total cycle time is minimized.  

The optimization constraints are chosen to ensure that the machine performs within the 

physical and control limits of its components and that the desired contouring accuracy during 

machining is maintained. For these reasons, constraints are imposed on the feedrate, and the 

velocities, motor torques, and jerks of all axes. Considering the machining process in general, 

the cutting forces are proportional to the feedrate. Excessive cutting forces are undesired as 

they can premature tool wear or breakage, which can either damage the part or the machine. 

Hence, the feedrate is limited by a maximum value to indirectly limit the resulting cutting 

forces. Naturally, the feedrate must also be greater than zero to avoid reverse motion along 

the toolpath. Thus, 

max0 FFk ≤<
 

(5.3) 

Axis velocity is constrained based on the physical limits of the axis drive. Ensuring that 

the drive doesn't exceed this limit also helps to prolong the life of the drive components, for 

example, the motor, ball screw and bearings. Thus, each axis velocity is bounded by a 

minimum and a maximum value, and compacted into matrix form as, 
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(5.4) 

The demanded torque must not exceed the amount of torque that the motor can produce. 

Excessive torque demands results in saturation of the motor's actuators and excessive 

tracking error. The system may also become non-linear during actuator saturation and go into 

instability if there is integral action in the controller. In order to describe the torque demand, 

a dynamic model of the axis drives is required. In the case that a dynamic model is 



Chapter 5. Feedrate Optimization 70 

 

unavailable, process designers can impose limits on the commanded acceleration, which is 

correlated to the torque demand, such that: 
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(5.5) 

 A better way to express torque demand is through the control signal which is 

proportional to the actuation torque in torque or current controlled drives. A simple open 

loop model of the drive system can be constructed with the identified control signal 

equivalent inertia (m), viscous damping (b) and Coulomb friction )( could  parameters, from 

Section 4.5, to describe the control signal )( tu . 
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(5.6) 

Then, bounds are imposed on the control signal such that actuator saturation is avoided, 

as in the following equation: 
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(5.7) 

Lastly, axis jerk must be limited for several reasons. Excessive jerk affects the tracking 

performance of the axis drives as high frequency motion commands result in poor tracking. 

Poor tracking can translate into inaccurate contouring, especially if the bandwidths of the 

drives are different and significantly lower than necessary. Furthermore, the jerk represents 

the frequency content of the commanded acceleration. High frequency content in the 

acceleration can excite vibrations in the machine tool structure which also degrades the total 

positioning. Finally, limits on the jerk help to ensure smooth motion. Hence, the jerk of each 

axis is bounded by a minimum and maximum value.  
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 Overall the optimization problem that is solved in this thesis is expressed with the 

mathematical formulation in Equation (5.9). Here, kt  is the absolute time boundary between 

the kth and k+1th segments. 
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(5.9) 

The solution methodologies of the worst-case optimization technique and the new 

heuristic optimization strategy are presented in the next section. 

5.3 Solution Methodology 

5.3.1 Worst-case Technique 
In the worst-case optimization technique which was presented by Weck et al. [31], the 

maximum allowable feedrate for each segment is computed using the worst-case curvature of 

the given toolpath geometry, and worst case assumptions for unknown variables. Here, this 

method is briefly reviewed to allow comparison with the proposed heuristic technique. For a 

spline toolpath described with the parametric function, Tzyxu ][)( =C , and a feed 

motion spline, )(ts , the axis velocities )(tC& , accelerations )(tC&& , and jerks )(tC&&&  can be 

expressed in terms of the geometric derivatives, and derivatives of the feed motion spline by 

applying the chain rule. The geometric derivatives, which are the derivatives with respect to 

the arc-length, are defined in Equation (5.10), and can be solved for in terms of the spline's 

parametric derivatives, and the derivatives of the feed correction polynomial, )(su , which 

was presented in Section 3.3.  
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(5.10) 

Axis velocities Cv &= , acceleration Ca &&= , and jerks Cj &&&=  are thus: 

ss &
& CC =

 
(5.11) 

2ss sss &&&&& CCC +=
 

(5.12) 

33 ssss ssssss &&&&&&&&&& CCCC ++=
 

(5.13) 

Using Equation (5.11), the maximum feed due to the limits on the axis velocities can be 

derived. The maximum allowable feedrate due to velocity limits is found by substituting in 

the maximum velocity bounds, solving for the feed for each axis limit, and finally taking the 

minimum value of the feeds determined by all three axes, as in Equation (5.14). It is assumed 

that the bounds are symmetric, hence only the maximum velocity value and absolute values 

of the geometric tangent are required. Note that T
sss zyx ][  is the unit tangent vector and 

is evaluated at several points along the toolpath segment to obtain a feed limit profile. If any 

of the components of the unit tangent vector is equal to zero, then a feed limit is not imposed 

by the corresponding axis.  
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(5.14) 

The feed limit due to the acceleration constraints is derived using Equation (5.12). 

Tangential acceleration is substituted with a worst-case (highest) value, maxA , and axis 
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acceleration is replaced with the specified axis acceleration limits. Hence solving for the feed, 

the feed limit due to the acceleration constraints is found as follows: 
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(5.15) 

Note that T
ssssss zyx ][  is the curvature vector and is also evaluated at several points 

along the toolpath. If any component of the curvature vector is zero, then the corresponding 

axis does not limit the feedrate due to acceleration constraints. Otherwise, in order to obtain a 

real positive solution for the feed, it is assumed that the axis acceleration limits are greater 

than the tangential acceleration limit, for example, maxmax Aax > , since the unit tangent 

vector components are less than or equal to one.  

If a dynamic model of the drive system is available, the axis acceleration limits can be 

calculated based on axis torque limits. Considering the open loop model described in 

Equation (5.6), the maximum command acceleration can be obtained by replacing the 

actuation torque by the maximum torque limit and by assuming the maximum value for the 

axis velocity term. Solving for the axis acceleration yields: 
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(5.16) 

The axis acceleration limits based on the torque limits can then be substituted into 

Equation (5.15) to obtain the feed limit due to the torque constraints. Here, the control signal 

limits must yield acceleration limits that are greater than the tangential acceleration limit in 

order to obtain a real positive solution.  

Finally, the feed limit due to the jerk constraints is derived using Equation (5.13). Jerk 

and acceleration in the feed direction are substituted with worst-case values, maxA  and maxJ , 

and the axis jerk term is replaced with the maximum axis jerk bound. A cubic equation 

results for each axis, as shown in Equation (5.17). Solving for the roots will yield a feed limit 

for each axis. The lowest feed among the three axes is the overall feed limit due to the jerk 

constraints.  
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(5.17) 

Similarly, it is assumed that the axis jerk limits are greater than the tangential jerk limit, 

for example  maxmax Jjx > , in order to obtain a real positive feed. Non-real solutions are 

discarded and in the case that there exist three real solutions, the smallest positive value is 

taken as the feed limit. 

The feed limit profile consists of the lowest feed limit among all of the velocity, 

acceleration or torque, and jerk constraints.  

),,min(lim jerkaccvel ffff ≤
 

(5.18) 

Then considering each segment, the smallest feed limit to occur in the length of a 

segment is the final command feed, kF . Using the optimized command feed values, the feed 

profile can be generated using the feed modulation strategy that was presented in Chapter 4. 

An example of the worst-case feed profile is illustrated in Figure 5-1. The worst-case feed 

optimization technique is simple and computationally inexpensive. However, the resulting 

feed profile is more conservative than necessary because of the assumption of worst-case 

values for unknown variables such as the tangential acceleration and jerk.  

The proposed strategy in this thesis aims to create feed profiles with shorter cycle times 

compared to the worst-case technique, with an efficient search method that finds higher 

feedrates. Assumed worst-case values are replaced with the actual values of the feed motion 

profile. An example of an optimized feed profile obtained with the proposed heuristic 

strategy, which is explained in the following section, is also illustrated in Figure 5-1, and 

shows that the heuristic feed is generally higher than the worst-case feed. 
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5.3.2 Heuristic Strategy 
The developed heuristic strategy, like the worst case technique, is general and can be 

applied to NURBS [26], [27] as well as other parametric toolpaths [2] [3] [9]. To solve the 

feed optimization problem presented in Section 5.2, the algorithm first narrows the search 

space to kinematically compatible feeds. Then, a rough scan of that range is performed to 

find a feasible solution. A feasible solution is defined as a command feedrate which results in 

a feed profile that satisfies all of the optimization constraints, listed in Equation (5.9), 

throughout the segment. Once a feasible feed is found, a bisection search method finds the 

highest feasible feed, which is defined as the optimized feed. In general, the algorithm 

consists of the following two parts, which are iterated one after another: 

1. Selecting kinematically compatible feed candidates; 

2. Checking for constraint violations along the trajectory. 

Feed Selection 
The algorithm assumes that the feed profile is generated using piecewise constant jerk 

values, leading to S-curve type feed transitions. Denoting the nominal feeds of the prior and 

current segments as 1−kF  and kF , the feed value at the segment boundary is 2/)( 1 kk FF +− . 

The feed increment, kΔ  is defined as 1−−=Δ kkk FF . The feed, tangential acceleration and 

jerk values are also bounded ( max|| Fs ≤& , max|| As ≤&& and max|| Js ≤&&& , where s  is the arc 
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Figure 5-1. Comparison of worst-case feed optimization [31] to the proposed heuristic 

strategy. 
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displacement). Considering the kth segment with an arc-length of kL , from Equation (4.23), 

the distance traveled at constant feed ( kfL , ) in that segment is written again in Equation 

(5.19). 
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(5.19) 

The above kinematic compatibility conditions are used to determine the minimum and 

maximum reachable feeds between adjacent segments, and therefore, they dictate the 

heuristic search space. Given this range of kinematically compatible solutions, a set of rules 

are followed to obtain an optimized feedrate that satisfies the optimization constraints. In the 

following, the feed selection rules are explained with a 5-segment example, as illustrated in 

Figure 5-2. 

At the start of the toolpath (Figure 5-2a), the search space is bounded with an initial 

feasible slow feed (e.g. 10 mm/s) and the maximum feed is found with a bisection search 

algorithm, which is illustrated in Figure 4-6, that utilizes Equation (5.19) to determine 

kinematic compatibility. After the search space has been defined by the upper and lower 

bounds min,kF  and max,kF , the algorithm iteratively tries out feed values to find the highest 

feedrate possible optkF , , which satisfies all of the optimization constraints. A bisection 

method - similar to the one used to find the kinematically compatible feeds - iteratively 

refines the search space and generates candidate feeds which bisect the refined search space, 

midf , as shown in Figure 5-3. Each candidate, which is inherently higher than the latest 
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feasible solution, is tested against the optimization constraints, in Equation (5.9), to 

determine feasibility. If it does not violate them, it is stored as the latest feasible solution. 

The latest feasible solution at the end of the nth iteration is the optimized command feedrate. 

Moving to the next segment, if a feasible solution that satisfies the optimization 

constraints in the search space cannot be found, as is the case in Figure 5-2b, then backward 

planning is performed to adjust the earlier feed values. The new search space, shown in 

Figure 5-2c, is bounded from below by the worst-case feed computed using Equations (5.14)-

(5.18), considering the highest curvature in that segment, and maximum possible magnitudes 

for tangential acceleration and jerk ( maxAs =&&  and maxJs =&&& ). The upper bound is set as the 

minimum feed reachable from the previous segment. The end conditions are freed such that 

the actual tangential acceleration and jerk profiles are zero (i.e. 0=s&&  and 0=s&&& ) and a 

constant feed profile is tested against the optimization constraints. A bisection search method 

is used to find the highest feasible feed candidate, and backward planning continues into 

earlier segment(s), as shown in Figure 5-2d, until a seamless connection can be made with 

the feed profile that was planned earlier in the forward pass.  

It can be seen that the search space in the 1st segment has been reduced, compared to the 

one in Figure 5-2a, and is bounded by the new fixed feedrate from below, and the maximum 
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feed reachable from the 2nd segment from above. Since the new fixed feedrate is lower than 

the previously found optimized feed for the 1st segment, the feed, tangential acceleration and 

tangential jerk profiles will also be generally lower in absolute terms than the originally 

planned feed motion profiles from the forward planning stage. That is, 

oldnewoldnewoldnew ssssss &&&&&&&&&&&& ≤≤≤ ,then  , if
 

(5.20) 

 In general, the lower feed is also a solution that satisfies all the optimization constraints 

of the previous segment. Considering Equations (5.11)-(5.13), the axis velocity, acceleration 

and jerk will also be lower if the component geometric derivatives are either both positive or 

both negative. For example, if the x-axis geometric derivatives and the feed motion 

derivatives are all positive, then the overall velocity, acceleration and jerk in the x-direction 

will also be less than the maximum x-axis limit.   
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However, if the geometric and feed motion derivatives are not all in the same direction 

then it is not guaranteed that the optimization constraints will remain satisfied. In the rare 

circumstance that a lower feed does not satisfy the optimization constraints due to the non-

convexity of the problem, the segment is flagged. As yet there is no heuristic rule to mediate 
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Figure 5-3. Bisection search algorithm to find an optimized feasible feed. 
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this situation, so the fixed feed of the adjacent segment is set as the command feed despite 

the optimization constraint violations and backward planning continues. Backward planning 

ends when the forward feed profile and the backward feed profile are kinematically 

compatible. When backward planning is complete, forward planning resumes again from the 

foremost segment (Figure 5-2e). 

The algorithm steps through each segment one by one, (Figure 5-2f-g), fixing the solution 

found in the previous segments and constructing the search space by solving for a 

kinematically compatible upper feed bound and a feasible lower bound that satisfies the 

kinematic compatibility conditions and optimization constraints. The use of the kinematic 

compatibility conditions effectively narrows down the set of possible solutions and with the 

set of heuristic rules an initial feasible feed is determined. For the kth segment, it is first 

determined whether a constant feed profile, where the feed of the previous segment is held 

the same through to the next segment, satisfies the optimization constraints. If it does not, 

then a scan of the kinematically compatible feed range at equal increments is performed to 

find a feasible feed. The scan can be performed in sequential or random order where the 

number of feeds to test depends on the resolution of the scan. For a kinematically compatible 

feed range defined by the bounds lowf  and highf , and a resolution )(df , the number of feeds 

to test )( scanN , and the feeds )( if  are determined with the following equations: 

scanscanlowhighhighi

lowhighscan

NiNffiff

dfffroundN

,,1,0/)(

]/)[(

K=−−=

−=

 
(5.22) 

Either the interval size or the number of intervals can be specified arbitrarily. In general, 

a feed resolution of 10 mm/s would be used. Then the number of feeds to test would be no 

more than 15 for a maximum range of zero to 150 mm/s. Once a feasible feed is found, it 

becomes the lower bound of the heuristic search space )( min,kF which is then used in the 

bisection search method in Figure 5-3, to find an optimized solution. If none of the test feeds 

prove to be feasible, then backward planning would be initiated. 

In the last segment ( Nk = , 0=ef ), both initial and final conditions are fixed, as shown 

in Figure 5-3g, and the search space is bounded by the maximum reachable feed that can be 

decreased smoothly to zero by the end of the segment. That is, the feed compatibility 
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condition for the final (Nth) segment in Equation (5.19) is used, which already considers that 

the feed motion must come to a stop. Kinematically compatible feeds are those that leave 

enough travel length in the segment to decelerate to zero. 

Constraint Evaluations 
For the NURBS toolpaths developed in Chapter 3, constraint evaluations are performed 

using the NURBS formulation, kinematic equations, and the drives’ dynamic model. If 

required, process-based bounds on the feedrate, which limit the cutting forces in the 

machining operation, can also be included. It follows from Equation (5.19) that the feed 

profile in the current segment is affected only by the preceding and next adjacent segments, 

thus making the feed planning in three consecutive segments independent from the rest of the 

toolpath. Hence, the constraints are checked only within a 3 segment window at a time (i.e. 

segments k-1, k, k+1). The NURBS toolpath position can be obtained as: 
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(5.23) 

Recalling that, iP  are the control points, iw are the weights, 1+n  is the number of 

control points, p  is the degree of the NURBS, and )(, uN pi  denotes a basis function over the 

span i  in the knot vector, },,{ 0 muu K=U [5] [26] [27]. A 7th order feed correction 

polynomial (i.e. )(sfu = ) is used for mapping the spline parameter (u ) to the arc-length ( s ) 

with 2nd order continuity at the connection boundaries, which mitigates unwanted feed 

fluctuations during interpolation and ensures acceleration continuous profiles to be generated, 

as explained in Chapter 3. Denoting the geometric derivatives with respect to the arc-length 

(Equation (5.10)) and applying the chain rule, the axis velocity, acceleration, and jerk 

profiles are derived as in Equations (5.11)-(5.13). The optimization constraints considered 

are the limits for axis velocity v , control signal (i.e. actuation torque) tu , and jerk j , which 

are expressed in Equation (5.9). Substituting in Equations (5.11)-(5.13) into the optimization 

constraints and normalizing them with respect to the limits yields the following 20 

expressions in Equation (5.24). 
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(5.24) 

Thus, in order to evaluate the constraints, the geometric derivatives at pre-selected points 

along the toolpath are obtained, and the feed, tangential acceleration and jerk values in the 

feed motion trajectory that occur at those points are also computed as required. Constraint 

evaluation check points are selected according to the variations in the toolpath segment as 

shown in Figure 5-4. Portions of the segments with large variations (i.e. high curvature) 

should contain more evaluation points than the portions with small variations (i.e. low 

curvature), to ensure acceptable enforcement of the constraints throughout the whole toolpath. 
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The constraint evaluation points can be a subset of the points resulting from the adaptive 

integration of the segment length, determined during the application of Simpson's Rule in 

Section 3.3.1, where a large subset corresponds to tighter constraints and a small subset 

translates into relaxed constraints. They can also be selected based on the knot distribution in 

the NURBS segment, as the knots and their positions in the parametric space relate to the 

number and influence of the control points that shape the curve. In general the more control 

points there are, the more curvature variation occurs in the curve, thus resulting in more 

knots to act as constraint evaluation points. Geometric derivatives, sC , ssC , and sssC , of 

each constraint evaluation point are calculated prior to the feed optimization. In this thesis, a 

subset of the integration data points is used. 

Feed s& , acceleration s&& , and jerk s&&&  values at each constraint evaluation point are 

obtained during the feed optimization by solving for the relative time value that corresponds 

to the arc displacement of each point. Given a proposed feed profile, from the feed selection 

step, and the arc displacement )(s  of a constraint evaluation point in a given segment, using 

Equations (4.11)-(4.13), the phase in which the arc displacement occurs is determined by 

comparing the given s  value to the arc displacement reached at the end of each phase. For 

example, if ee sss 54 ≤< , then the constraint evaluation point lies within phase  of the feed 

motion profile of a segment. Then, the corresponding displacement equation is used to solve 

for the relative time value, τ , as shown in Equations (5.25)-(5.27) for the initial (1st), middle 

Constraint Evaluation 
Check Point, C(ui)

X

Y
...

...NURBS Toolpath, C(u)
 

Figure 5-4. Constraint evaluation points based on the variation of the toolpath 
geometry. 
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(kth) and final (Nth) segments. The displacement equations for constant feed phases are 

linear and can therefore be rearranged to solve for the relative time variable. Quadratic 

functions, which describe the trajectory during constant acceleration phases are solved with 

the numerically stable quadratic formula, while cubic equations are solved using the Newton 

Raphson method, where the time duration of the constant jerk phase serves as the initial 

guess, 0τ , for the relative time parameter. Finally, using Equations (4.2)-(4.10), the feed, 

tangential acceleration and jerk values are computed at the calculated relative time values. 

Then the axis velocity, acceleration and jerk values that occur at the given constraint 

evaluation points are then calculated with Equations (5.11)-(5.13).   

If any of the constraints are violated in a segment, the proposed feedrate is determined to 

be infeasible and becomes the upper bound of the refined search space for the next iteration. 

On the other hand, if all of the constraints are satisfied, then the proposed feed is stored as the 

latest feasible feed and becomes the lower bound of the refined search space.   
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 Iterations 
When processing each segment, the candidate feed generation and constraint evaluation 

steps are iterated one after another, which helps to refine the results. During each iteration, a 

new candidate feed value is generated by bisecting the lower and higher bound of the refined 

search space. If the candidate feed does not violate the optimization constraints in Equation 

(5.24), then it becomes the new lower bound of the search space. Conversely, if it violates 

any constraint, then the candidate feed replaces the higher bound.  This allows the algorithm 

to zone in on a possibly better solution, if there is one, without wasting valuable 

computational time. However, this is subject to the underlying assumption that the solution 

space is convex. For example, if there are two feasible feeds, 1f  and 2f  such that 21 ff < , 

then there exists a third feed in between the two feeds, such that 231 fff << , that is also 

feasible. The iteration stops when the refined feasible feed is within a given tolerance, tolF , 

of the next feed candidate, as shown in Figure 5-3. In the implementation, it was found that 

using a search tolerance of 1 mm/s, for the experimental setup where the maximum axis 

velocity is 150 mm/s, led to successful cycle time reduction, without becoming 

overburdening in terms of computational load. The resulting number of bisection operations 

in solving for the best solution with a range defined by min,kF  and max,kF  can be calculated 

with the following equation: 

1)]/)(([log min,max,2 +−= tolkkiter FFFroundN
 

(5.28) 
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Sample calculations using Equation (5.28) are listed in Table 5-1. 

Table 5-1. Sample calculation of the number of bisection operations for a range defined 
by Fk,min=0 and Fk,max=100 mm/s. 

Search Tolerance, tolF  [mm/s] Number of Bisection Operations, iterN  

2 7 

1 8 

0.1 11 

0.01 14 

 

One of the principal advantages of the proposed technique is that the duration required to 

process each segment can be deterministically specified, by setting the feed scanning 

resolution )(df , search tolerance )( tolF , and the number of constraint evaluations to be 

performed for each segment. This makes the algorithm highly suitable for real-time 

implementation in comparison to gradient search-based methods [32]. The heuristic rules 

ensure that a feasible feed is computed, within the allowed computational window. A look-

ahead buffer is still required in order to plan sufficient distance for accelerations and 

decelerations, which also holds for other feed optimization techniques as well [30], [31], [32]. 

Although the computational duration becomes nondeterministic when backward planning is 

invoked, an upper bound on the number of blocks that may need to be processed in one cycle 

can be computed by considering the smallest possible segment size and the kinematic 

properties of the feed profile as shown in Section 4.4. By setting the look-ahead buffer to be 

sufficiently large and utilizing a fast enough CPU, the problem of NC instruction overrun can 

be avoided, as is done in current CNC interpolators. 
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5.4 Experimental Results 

The heuristic feed optimization strategy has been validated experimentally on the 3-axis 

router that was introduced in Section 4.5.  Adaptive sliding mode control is used for closing 

the servo loop. The loop closure (interpolation) period was 1 ms. The maximum velocity, 

jerk, and control signal (i.e. actuation torque) limits that were used are 150 mm/s, 25,000 

mm/s3, and 5 V (50% actuation torque), respectively. The first benchmark is realized by 

comparing the heuristic strategy with the worst-case [31] and gradient-based [32] solutions, 

using a fan-shaped quintic spline toolpath from [9] with 150% scaling (Figure 5-5).  

The kinematic profiles obtained with all three methods are summarized in Figure 5-6. 
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Figure 5-5. Benchmark contour - 88-segment quintic spline toolpath [9]. 
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While implementing the worst-case method, jerk constraints were incorporated using 

Equation (5.17) and assuming maximum possible magnitudes for tangential acceleration and 

jerk. All three methods were applied subject to the same constraints on the feedrate, axis 

velocity, torque demand, and jerk, as defined in the feed optimization problem formulation in 

Equation (5.9). Each method satisfies the feedrate and axis velocity constraints. However, in 

the case of the axis jerk constraint there are instances where the proposed heuristic method 

violates the prescribed limit by small amounts. This was observed to occur because the 

number of constraint evaluation points used in the heuristic method was less than the number 

of evaluation points in the gradient method. This resulted in a slight relaxation of the limits, 

allowing for minor violations to occur. The violations were found to be tolerable as they did 

not adversely affect the tracking performance of the controlled system, as seen in Figure 5-7. 

Additionally, the real-time control signal, which directly represents the actuation torque, also 

slightly exceeds the prescribed limits because of the dynamic nature of the closed-loop 
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Figure 5-6. Optimized feedrate profiles using worst-case [31], gradient-based [32], and 

heuristic (proposed) optimization strategies 
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feedback servo controller which was not considered in the dynamic model for torque demand. 

The problem formulation for all three methods used an open loop dynamic model to predict 

the torque demand. For this reason the control signal limit was set rather conservatively (50% 

of actuation torque) so that the amplifier limit which occurs at 10 [V] is never invoked as 

seen in Figure 5-7.  Alternatively, the limits could be modified according to the variance of 

the closed-loop control signal, which was reported in [41]. 

Table 5-2. Computational time for benchmark toolpath feed optimization. 
Optimization 

Strategy Computation Time [s] 

Worst-case 1.555 

Heuristic 6.761 

Gradient-based 69.415 

 

The proposed heuristic method exhibits a 13.73% decrease in cycle time compared to the 

worst-case method from 6.975 s to 6.017 s and maintains a comparable tracking accuracy. 

The computational time used by each optimization technique is summarized in Table 5-2. 

The implementation was made on a Pentium IV 3 GHz computer using MATLAB. The 

computational time is an order of magnitude less, compared to the gradient-based feed 
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Figure 5-7. Comparison of tracking performance for different optimization strategies. 
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optimization, and about four times longer compared to the worst-case feed optimization. The 

heuristic feed optimization strategy provides a good compromise between the worst-case and 

gradient based methods. On the one hand, the computational load is comparable to the worst-

case technique and the cycle time is shorter. On the other hand, the cycle time is longer than 

the gradient-based solution, because there is less restriction on the shape of the feed profile in 

the latter approach. The gradient-based technique doesn't require zeroed acceleration and jerk 

boundary conditions between segments, as the jerk-limited S-curve profile does. However, 

the simplified feed motion profile contributes to the reduction in the computational load, 

which is observed to be approximately a factor of ten.  

The heuristic and worst-case techniques were also compared in surface machining the 

tibial-plateau (lower knee joint) bone implant, which was scaled by 200% for machining 

convenience. The CAD model was converted into contour NURBS after applying ball end 

tool offset compensation (Figure 5-8) as explained in Chapter 4, and subsequently machined 

out of wax using both optimization techniques. In order to accelerate the experiment, a 
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Figure 5-8. Optimized feedrate profiles of a sample NURBS toolpath. 



Chapter 5. Feedrate Optimization 90 

 

relatively coarse toolpath tolerance (25 um) was used, which can be made tighter if a 

smoother surface is required. Additionally, the step down, that is the height between contour 

levels, was set to 0.5 mm. 

Experimental results comparing the proposed heuristic strategy with the worst-case 

technique for the highlighted contour are shown in Figure 5-9 and a cycle time comparison 

for the representative contour and the complete toolpath is given in Table 5-3. Note that the 

duration of the total NURBS cycle time excludes linear tool movements. As seen, 26.36% 

time reduction is observed for the highlighted contour and an overall 21.62% cycle time 

reduction is realized for all of the NURBS toolpaths combined, compared to worst-case feed 

planning. The tracking error in both cases is less than 15 um, indicating that the cycle time 

reduction does not come at the expense of the drives’ dynamic accuracy. 

Table 5-3. Cycle time comparison for implant surface. 
Optimization 

Strategy 
Sample 
NURBS 

Toolpath [s] 

All NURBS 
Toolpaths [s] 

Worst-case 6.891 601.009 

Heuristic 5.074 469.341 
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Figure 5-9. Tracking performance of contour machining for a biomedical implant. 



Chapter 5. Feedrate Optimization 91 

 

Hence, the heuristic feed optimization strategy yields shorter cycle times compared to the 

worst-case technique, while also preserving the desired machining tolerance.  

5.5 Conclusions 

This chapter has presented a new feedrate optimization strategy that can be applied to 

trajectory generation using spline toolpaths. The proposed strategy intelligently uses heuristic 

rules, alongside analytically derived feasibility conditions, to achieve lower cycle times 

compared to the widely accepted worst-case approach in NURBS toolpath feed planning. 

Cycle time reductions are shown to be as high as 26% from the worst-case solution.  The 

computational load is approximately ten times less compared to gradient-based methods 

while being just four times longer than the worst-case implementation. The heuristic 

approach offers a compromise between the simplistic worst-case approaches, which are 

generally conservative, and the complex gradient-based techniques, which can be 

computationally expensive. Practically, the cycle time reductions are obtained at low 

computational cost, and the utilization of the S-curve as the basis feed function allows the 

heuristic technique to be implemented inside, or in conjunction with, existing CNC 

interpolators. Contour and surface machining experiments were performed to validate the 

proposed strategy. Experimental results show that the tracking error is maintained at less than 

25 um, which indicates that the achieved cycle time reductions do not adversely affect the 

tracking performance of the drive system. The heuristic feed optimization strategy effectively 

minimizes the cycle time while maintaining the desired contouring accuracy of the machined 

part. 
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Chapter 6 

Conclusions and Future Work 

Overall, this thesis has presented a NURBS toolpath interpolation scheme with 

continuous feedrate modulation and feedrate optimization for CNC machining. The proposed 

techniques result in coordinated axis motion that is smooth and time-optimal within the 

constraints of the drives' dynamic limits. 

NURBS toolpaths were parameterized with geometric curvature continuity using beta-

constraints, which allowed for additional flexibility that parametric continuity constraints do 

not afford in shaping the curve to avoid oscillations. The beta shape parameters are a useful 

design tool, but as of yet there is no automatic way of assigning their values such that the 

parameterization always generates the desired smooth toolpath. It was found that smooth 

toolpaths could always be found, but sometimes required designer intervention in the 

toolpath planning, which is unfortunately time consuming. Several methods to improve the 

automation of the NURBS toolpath parameterization may include the addition of a jerk 

penalizing term into the curve fitting objective function, better heuristics for setting the 

values of beta parameters, and segmenting the data points adaptively according to favorable 

conditions for generating smooth non-oscillatory splines. Furthermore, the weights in the 

NURBS equation were underutilized in the NURBS curve fitting method, in this work as 

well as in the literature. Further research into the effect of weights and how they can be 

assigned values other than one to parameterize a better behaving spline is recommended. 

For NURBS interpolation, the arc-lengths of the NURBS segments were integrated 

numerically with Simpson's adaptive quadrature method. When the quadrature data of each 

segment is summed cumulatively, it provided a discrete mapping of the spline parameter to 

the arc displacement along the spline segment. An inverse relationship which expresses the 

spline parameter in terms of arc displacement was obtained by solving a constrained least 

squares optimization problem with the Lagrange Multipliers technique. This function is 

known as the feed correction polynomial. Interpolation using the feed correction polynomial 

was shown to reduce unwanted feedrate fluctuations while being numerically efficient and 
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robust against numerical errors. Feedrate fluctuations are reduced from around 40 % for 

natural interpolation to 0.1 % for interpolation with feed correction. Excessive acceleration 

and jerk in the axes are also avoided. However, the main challenge encountered in this work 

was ensuring that the feed correction polynomial accurately reflected the spline parameter 

and arc displacement relationship. This issue was addressed by evaluating the mean squared 

error (i.e. variance) between the actual data and its estimates and if the error was above a 

specified tolerance, dividing the data into two sets and using multiple splines. Most 

numerical instability which caused inaccurate fitting happened when a large change in the 

spline parameter resulted in only a very small change in arc displacement. Although using 

multiple splines was presented in this work, further investigation into possible numerical 

instabilities encountered is suggested for future work.  

A generalized framework for feed modulation over multiple toolpath segments using the 

S-curve function was developed in this thesis. The feed modulation technique used 

analytically derived kinematic compatibility conditions to ensure that the displacement, 

feedrate and acceleration profiles were continuous and jerk-limited in all axes. The feed is 

modulated using a bisection search method that is simple and numerically efficient. With the 

use of a look-ahead window, the feed modulation method is well suited to support real-time 

interpolation. Moreover, the framework can be interfaced with different feed optimization 

techniques such as the worst-case curvature method [31]. It served as the foundation for the 

new heuristic feed optimization strategy developed in this thesis. Using analytically derived 

kinematic compatibility conditions and an efficient bisection search algorithm with 

optimization constraints to test the feasibility, the segment feed is maximized. It was shown 

that the new strategy reduced the cycle time by approximately 13% - 26% compared to the 

worst-case curvature approach and is only slightly more computationally intensive. The 

heuristic strategy has less computational load compared to a gradient-based solution [32] 

making it very practical to implement on a CNC controller.  

The overall NURBS trajectory generator has been validated in machining experiments 

conducted on a 3-axis router. By ensuring that the toolpath trajectory has continuous 

acceleration and is jerk limited in all axes, it is demonstrated that the coordinated motion is 

smooth and continuous. Cycle time reductions are obtained and axis tracking errors do not 

exceed 25 um. Contouring accuracy is not sacrificed for faster feedrates. Therefore, the 
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NURBS trajectory generator can be practically and economically integrated into, or in 

conjunction with, existing CNC controllers to meet higher demands for high precision in 

faster cycle times.  

Suggestions for future work include implementing the algorithms developed in this thesis 

in a real-time environment on the dSPACE controller, testing the algorithms with NURBS 

toolpaths that are parameterized by standard CAD/CAM packages or derived directly from 

the CAD geometry rather than from linear toolpaths, and investigating numerical instabilities 

in the feed correction polynomial curve fitting.  
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Appendix A 

Non Uniform Rational B-Spline (NURBS) Format 

The data points used to generate the NURBS fan-shaped toolpath are from [8] scaled by 

150%. There are 89 data points. 

Fan-shaped Toolpath Data Points  
qx  = [ -16.0688,   -0.0562,    7.8712,   13.5113,   15.0488,   13.5863,    9.1125,    8.2125,    

8.4150,    9.2025,   10.5413,   12.0825,   13.5825,   15.1650,   18.1950,   25.5900,   31.6463,   

34.3387,   37.6013,   41.3325,   45.1275,   49.6200,   56.9850,   57.1575,   54.1838,   48.1388,   

39.2062,   30.1613,   15.1537,   11.8650,   10.4175,    9.0300,    8.3963,    8.3438,    8.5313,    

9.0975,   10.6463,   18.3188,   27.3038,   30.2400,   32.4675,   33.5887,   33.2400,   30.2137,   

16.0688,    0.0562,   -7.8712,  -13.5113,  -15.0488,  -13.5863,   -9.1125,   -8.2125,   -8.4150,   

-9.2025,  -10.5413,  -12.0825,  -13.5825,   -15.1650,  -18.1950,  -25.5900,  -31.6463,              

-34.3387,  -37.6013,  -41.3325,  -45.1275, -49.6200,  -56.9850,  -57.1575, -54.1838,               

-48.1388,  -39.2062,  -30.1613,  -15.1537,   -11.8650,  -10.4175,   -9.0300,   -8.3963,  -8.3438,   

-8.5313,   -9.0975,  -10.6463,  -18.3188,  -27.3038,  -30.2400,  -32.4675,  -33.5887,  -33.2400,  

-30.2137,  -16.0688] 

qy = [  -56.9850,  -57.1575,  -54.1838,  -48.1388,  -39.2062,  -30.1613,  -15.1537,              

- 11.8650,  -10.4175,   -9.0300,   -8.3963,   -8.3438,   -8.5313,   -9.0975,  -10.6463,  -18.3188,  

-27.3038,  -30.2400,  -32.4675,  -33.5887,  -33.2400,  -30.2137,  -16.0688,  -0.0562,    7.8712,   

13.5113,   15.0488,   13.5863,    9.1125,    8.2125,    8.4150,    9.2025,   10.5413,   12.0825,   

13.5825,   15.1650,   18.1950,   25.5900,   31.6463,   34.3387,   37.6013,   41.3325,   45.1275,   

49.6200,   56.9850,   57.1575,   54.1838,   48.1388,   39.2062,   30.1613,   15.1537,   11.8650,   

10.4175,    9.0300,    8.3963,    8.3438,    8.5313,    9.0975,   10.6463,   18.3188,   27.3038,   

30.2400,   32.4675,   33.5887,   3.2400,   30.2137,   16.0688,    0.0562,   -7.8712,  -13.5113,     

-15.0488,  -13.5863,   -9.1125,  -8.2125,   -8.4150,   -9.2025,  -10.5413,  -12.0825,  -13.5825,  

-15.1650,  -18.1950,  -25.5900,  -31.6463,  -34.3387,  -37.6013,  -41.3325, -45.1275,              

-49.6200,  -56.9850] 
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The beta shape parameters, 1β  and 2β , used in the NURBS toolpath parameterization of 

the fan-shaped toolpath are listed here. Note that a start (*) means that the beta value 1β  was 

manually modified to reduce oscillations in the curve. 

Segment, k 1β  2β  

1 0.4516 0 

2 0.7761 0 

3 1.2829 0 

4* 1.0000 0 

5 0.6761 0 

6* 0.4000 0 

7* 2.0000 0 

8 1.7025 0 

9 1.8791 0 

10* 0.4000 0 

11 2.4056 0 

12* 1.0000 0 

13* 1.5000   0 

14 0.4544 0 

15 0.3781   0 

16* 4.0000  0 

17 0.7434 0 
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The NURBS format consists of the degree p, the number of control points n + 1, a knot 

vector U, control points Pi, and weights wi. The NURBS parameterization generated 17 

segment each with degree of three and six control points, except the 17th segment, which has 

nine control points. All weights are equal to one. 

In the following table, the knot vector and control points are listed sequentially for each 

segment. Only the unique values of the knot vectors are listed, however the full knot vector 

would include 3 more zeros at the beginning and 3 more zeros at the end. Since the first 

control point of a segment is the same as the last control point of the previous segment, it is 

omitted in the entries for all but the first segment. 

Segment  Knots Control Points (x,y) 

k u1,p+1, ... , u1,m-p Pk,0, ..., Pk,n 

1 0,  0.4789,  0.6476, 1 (-16.0694, -56.9551) 
(-8.3336, -58.5969) 
(4.1621, -58.7056) 
(16.7467, -45.7588) 
(15.1264, -36.0089) 
(13.5246, -30.0387) 

 

k uk,p+1, ..., uk,m-p Pk,1, ..., Pk,n 

2 0, 0.7803, 0.8716, 1 (11.9228, -24.0685) 
(9.5683, -18.0956) 
(7.9234,  -9.9527) 
(9.5652,  -8.6741) 
(10.5648,  -8.3924) 

3 0, 0.1655, 0.2825, 1 (11.5644,  -8.1106)  
(13.3390,  -8.4241) 
(19.3847, -10.6097) 
(22.8611, -14.3091) 
(25.5827, -18.3011) 
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k uk,p+1, ..., uk,m-p Pk,1, ..., Pk,n 

4 0, 0.5593, 0.7082, 1 (28.3042, -22.2932) 
(31.4117, -28.3756) 
(38.3488, -33.0681) 
(42.5078, -34.7395) 
(45.6878, -33.0119) 

5 0, 0.3952, 0.6443, 1 (49.9954, -30.6717) 
(58.2932, -18.3800) 
(58.6229,  -1.0776) 
(53.8510,  10.7472) 
(48.1719,  13.4772) 

6 0, 0.5261, 0.7690, 1 (42.4928,  16.2073) 
(29.9952,  14.0217) 
(21.1425,  11.0262) 
(12.6160,  8.0204) 
(10.5200, 8.3398) 

7 0, 0.3965, 0.5900, 1 (9.0812, 8.5591) 
(8.3854,  10.1370) 
(8.3008,  12.4714) 
(8.4844,  14.1095) 
(9.1682,  15.5321) 

8 0, 0.4301, 0.6887, 1 (10.6028,  18.5165) 
(16.8407,  25.4791) 
(25.8525,  29.9687) 
(31.0562,  34.7591) 
(32.4800,  37.5026) 

9 0, 0.1828, 0.3690, 1 (33.9038,  40.2461) 
(33.9155,  46.0398)  
(23.2687,  57.4627) 
(8.2387,  58.5978) 
(0.4939,  57.3339) 

10 0, 0.3358, 0.5103, 1 (-7.2510,  56.0700) 
(-13.1514,  50.8971) 
(-16.7405,  34.6472) 
(-10.8161,  20.7484) 
(-9.0215,  15.4369) 
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k uk,p+1, ..., uk,m-p Pk,1, ..., Pk,n 

11 0, 0.5180, 0.6774, 1 (-8.2622,  13.1895) 
(-7.8718,  11.4062) 
(-9.3412, 8.5122) 
(-10.9515, 8.1901) 
(-12.1249, 8.2972) 

12 0, 0.1341, 0.3209, 1 (-13.2983, 8.4044) 
(-16.3351, 9.4330) 

(-23.8354,  13.9873) 
(-28.3362,  22.9256) 
(-31.6135,  27.2606) 

13 0, 0.3759, 0.5604, 1 (-33.4276,  29.6603) 
(-36.0170,  32.0157) 
(-43.2263,  34.5107) 
(-47.1266,  33.0694) 
(-49.8786,  29.8837) 

14 0, 0.5098, 0.6988, 1 (-54.6663,  24.3416) 
(-61.2492, 7.7404) 

(-53.8494, -10.4212) 
(-45.7185, -15.4743) 
(-39.2635, -15.2976)  

15 0, 0.6628, 0.8815, 1 (-32.8085, -15.1208) 
(-22.2832, -10.5213) 
(-13.8906,  -8.5210) 
(-9.8434,  -8.3416) 
(-9.0839,  -9.0280) 

16 0, 0.3133, 0.4773, 1 (-8.3243,  -9.7144) 
(-8.1762, -11.9022) 
(-8.7961, -14.5951) 
(-9.5323, -16.6295) 
(-10.7083, -18.2904)  
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k uk,p+1, ..., uk,m-p Pk,1, ..., Pk,n 

17 0, 0.3284, 0.4353, 
0.5027, 0.5691, 0.6439, 

1 

(-13.6634, -22.4642) 
(-22.7358, -28.9401) 
(-29.7394, -33.1950) 
(-32.5702, -37.6368) 
(-34.2249, -41.3847) 
(-31.3445, -51.4373) 
(-23.8052, -55.3133) 
(-16.0694, -56.9551) 
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Appendix B 

Kinematic Compatibility Derivations 

In this appendix, expressions for the time duration of each phase (constant jerk, constant 

acceleration, and constant feedrate) are derived for an N-segment toolpath. Using these 

expressions, the kinematic compatibility conditions are also derived. 

Constant Jerk Phase Time Duration 
From the trapezoidal nature of the acceleration profile, the acceleration value reached in 

the time duration kjT ,  )11( +≤≤ Nk  is: 

k

k
kjkjkk J

A
TTJA =→= ,,

 
(B.1)

Constant Acceleration Phase Time Duration 

Considering that the desired feed of the initial segment )( 1F  must be reached by the end 

of the first acceleration transient, let 13 Ff e = . From Equation (4.8),  
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(B.2)

To obtain an explicit expression for ef3 , substitute the expression for the end feed of the 

previous phase into the next equation recursively. That is: 
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(B.3)

Therefore after simplification: 

1,11,11 ja TATAF +=
 

(B.4)

Substitute Equation (B.1) into Equation (B.4) to get: 

1

2
1

1,11 J
ATAF a +=

 
(B.5)

Solving for the constant acceleration time duration of the initial segment yields: 

1

1

1

1
1, J

A
A
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(B.6)

Now solving for the kth constant acceleration time duration kaT , , the desired feed )( kF  

must be reached by the end of the kth acceleration transient. Thus, let ke Ff =2 . From 

Equation (4.9), 

( )

2
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2
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 (B.7)

Then by recursively substituting the previous expression into the next gives: 
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Substitute Equation (B.1) into Equation (B.8) and simplify. 
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Equation (B.9) is also generalizable to the initial segment )1( =k by setting .00 =F  

Constant Feedrate Phase Time Duration 

Initial (1st) Segment 

Considering that the total travel length by the end of the motion must be equal to the 

segment arc-length )( kL , the constant feedrate time duration )( ,kfT  can be obtained by 

equating the segment arc-length to the total length traveled. A different expression results for 

each type of segment. To start, let us consider the initial segment and define es6  as the total 

length traveled. From Equations (4.8) and (4.11), 
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Also, recall that the feed reached at the end of the third phase is equal to the desired 

feedrate, i.e. 13 Ff e = .  

To obtain an explicit equation for ,6es  expressions for the end feed are substituted into 

the equations for the length traveled by the end of each phase.  
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Then expressions for the length traveled in the previous phase are substituted into the 

next phase equations recursively to yield: 
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Substituting in kjkk TAJ ,/=  and grouping terms in Equation (B.12) results in the 

following equation: 
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Substitute kjT , , 1,aT , and kaT , , Equations (B.1), (B.6) and (B.9), respectively, into 

Equation (B.13). 
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Expand and simplify Equation (B.14). 
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Thus, 

2

2
12

2

121
2
2

3
2

2

21
1,1

1

2
01

1

011

1

010

1

10
6

8
)(

2
)(

242

2
)(

2
)()(

A
FF

A
FFF

J
A

J
AFTF

A
FF

J
FFA

A
FFF

J
AF

s

f

e

−
+

−
++++

−
+

−
+

−
+=

 
(B.16)

Define kΔ  as 1−−=Δ kkk FF . Then, kkk FF Δ1 −=− . Substituting the former relation 

into Equation (B.16) yields, 
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Here we will substitute 221 Δ−= FF  into the starred (*) term of Equation (B.17). 
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Then letting 16 Ls e =  and solving for 1,fT  results in the following expression for the 

constant feedrate time duration: 
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Note that by definition of the initial segment, the start feed 0F  is equal to zero. It is still 

included here for completeness. 

Middle (kth) Segment 

Considering the kth )12( −≤≤ Nk  constant feed phase, es5  is the total distance traveled. 

From Equations (4.9) and (4.12), the feeds and travel lengths at the end of each phase are 

listed below: 
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Recall that the desired feedrate )( kF is reached by the end of the second phase for mid-

segments, that is ke Ff =2 . Recursively solving for the end feeds of each phase and 

substituting them into the travel length equations results in the following algebraic steps: 
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To obtain an explicit equation for ,5es  travel length equations are recursively substituted 

into the expression for es5  which results in the following equation: 
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Substituting in kjkk TAJ ,/=  and grouping terms in Equation (B.22) results in the 

following equation: 
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Substitute kjT ,  and kaT , , Equations (B.1) and (B.9), respectively, into Equation (B.23). 
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Expand and simplify Equation (B.24). 
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Thus, 
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Substituting the 1Δ −−= kkk FF into Equation (B.26) yields: 

}

}

1

2
1

1

1

2*

2
1

3
1

1

1

,2

32
1*

1
5

8
Δ

2
Δ

242

2428
Δ

4
Δ

4
Δ

+

+

+

+

+

+

+

+

−

+++

++−+++=

k

k

k

kk

k

k

k

kk

kfk
k

k

k

kk

k

k

k

kk

k

kk
e

AA
F

J

A
J
AF

TF
J

A
J
AF

AA
F

A
F

s

 
(B.27)

Here we will substitute kkk FF Δ1 += −  into the first starred term (*1) and 

11 Δ ++ −= kkk FF  into the second starred term (*2) of Equation (B.27). 
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Then letting ke Ls =5  and solving for kfT ,  results in the following expression for the 

constant feedrate time duration for the kth segment )12( −≤≤ Nk : 
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Final (Nth) Segment 

Lastly, considering the final segment )( Nk = , the constant feed time duration is found 

similarly. The total travel distance of the final segment is denoted as es6 . From Equations 

(4.10) and (4.13), the feed and distance traveled at the end of each phase are listed below: 
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(B.30)

The desired feedrate of the final segment )( NF is reached by the end of the second phase 

as in the mid-segment, that is Ne Ff =2 . Recursively solving for the end feeds of each phase 

and substituting them into the travel length equations results in the following equations: 
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To obtain an explicit equation for ,6es  travel length equations are recursively substituted 

into the expression for es6  which results in the following equation: 
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Substituting in kjkk TAJ ,/=  and grouping terms in Equation (B.32) results in the 

following equation: 
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(B.33)

Substitute kjT ,  and kaT , , Equations (B.1) and (B.9), respectively, into Equation (B.33). 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
++++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−
=

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+−

−−

−
−

2
1

2
1

1

1

1

1

1

1
2

1

1

1

1
1

1

1

1

1

1

1
,

1

2

2
1

2
1

1
16

2
3

2
1

2
2
1

4
1

3
1

2
1

8
1

2
1

4
1

N

N

N

N

N

NN

N

N

N

N

N

NN
N

N

N

N

NN

N

N
Nf

N

N

N

N

N

NN
N

N

N

N

N

N

N

N

NN

N

N

N

NN
N

N

N

N

N

N

NN
Ne

J
A

J
A

A
FF

J
A

J
A

A
FF

A

J
A

A
FF

J
A

T
J
A

J
A

A
FF

F

J
A

J
A

J
A

A
FF

J
A

A
FF

A

J
A

J
A

A
FF

Fs

 
(B.34)

Expand and simplify Equation (B.34). 
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Thus, 



Appendix B. Kinematic Compatibility Derivations 118 

 

1

11

1

1

1

2
1

1

1
,

1
2

32
111

6

2
)(

2
)()(

4
)(

248
)(

24
)(

+

++

+

+

+

+

+

+

−−−−

−
++

−
+

−
++

−
+−

−
++

−
=

N

NNN

N

NN

N

NN

N

NNN
NfN

N

NNN

N

N

N

NN

N

NN

N

NNN
e

J
FFA

J
AF

A
FF

A
FFF

TF

A
FFF

J

A
A
FF

J
AF

A
FFF

s

 
(B.36)

Substituting the 1Δ −−= kkk FF into Equation (B.36) yields: 
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(B.37)

Here we will substitute NNN FF Δ1 += −  into the first starred term (*1) and 

11 Δ ++ −= NNN FF  into the second and third starred terms (*2) of Equation (B.37). 
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(B.38)

Then setting the total distance traveled equal to the segment arc-length )( 6 Ne Ls =  and 

solving for NfT ,  results in the following expression for the constant feedrate time duration 

for the Nth segment: 
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(B.39)

Note that by definition of the final segment, the end feed 1+NF  is equal to zero. It is still 

included here for completeness. 

Kinematic Compatibility Conditions 

Jerk Condition 

The maximum jerk is limited by the sampling frequency of the CNC controller. Using 

Equation (B.1), the maximum allowable jerk magnitude is based on the specified maximum 

acceleration )( maxA and sample period )( sT . The specified jerk )( kJ must be less than the 

maximum allowable jerk as follows:  

s
k T

A
JJ max

max =≤
 

(B.40)

Acceleration Condition 

If the magnitude of acceleration for the constant acceleration phase is larger than what is 

required to change the feed from 1−kF  to kF , then the acceleration value is incompatible 

with the desired feed transition. For the acceleration value to be compatible, the time duration 

of the constant acceleration phase must be non-negative, that is 0, ≥kaT . Using Equation 

(B.9), the condition on the acceleration magnitude )( kA  based on the specified jerk )( kJ  

and desired feedrates ),( 1 kk FF −  is derived in the following manner: 
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(B.41)

Travel Length Condition (Feed Compatibility) 

In order to have feed compatibility, the motion described by the specified values of 

acceleration ),( 1+kk AA , jerk ),( 1+kk JJ  and feed ),,( 11 +− kkk FFF  must be achievable within 

the available travel length. Therefore, after subtracting the distance required for the 

acceleration transients from the segment arc-length )( kL , the remaining travel length for the 

constant feedrate phase must be greater than or equal to zero, that is )0( , ≥kkf FT . Using 

Equations (B.19), (B.29), and (B.39), the initial (1st), middle (kth), and final (Nth) segments' 

feed compatibility equations are stated as follows: 
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This section has derived expressions for the time durations of each type of phase 

(constant non-zero jerk, constant non-zero acceleration, and constant non-zero feedrate) and 

expressions for the kinematic compatibility conditions (jerk, acceleration, and travel length). 

These equations are used in implementing a continuous feedrate modulation strategy for an 

N-segment toolpath which was discussed in Chapter 4. 

 

 

 


