70 research outputs found

    Combination of peripheral neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio is predictive of pathological complete response after neoadjuvant chemotherapy in breast cancer patients

    Get PDF
    The immune system seems to play a fundamental role in breast cancer responsiveness to chemotherapy. We investigated two peripheral indicators of immunity/inflammation, i.e. neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR), in order to reveal a possible relationship with pathological complete response (pCR) in patients with early or locally advanced breast cancer treated with neoadjuvant chemotherapy (NACT). We retrospectively analyzed 373 consecutive patients affected by breast cancer and candidates to NACT. The complete blood cell count before starting NACT was evaluated to calculate NLR and PLR. ROC curve analysis determined threshold values of 2.42 and 104.47 as best cut-off values for NLR and PLR, respectively. The relationships between NLR/PLR and pCR, along with other clinical-pathological characteristics, were evaluated by Pearson's χ 2 or Fisher's exact test as appropriate. Univariate and multivariate analyses were performed using a logistic regression model. NLR and PLR were not significantly associated with pCR if analyzed separately. However, when combining NLR and PLR, patients with a NLRlow/PLRlow profile achieved a significantly higher rate of pCR compared to those with NLRhigh and/or PLRhigh (OR 2.29, 95% CI 1.22-4.27, p 0.009). Importantly, the predictive value of NLRlow/PLRlow was independent from common prognostic factors such as grading, Ki67, and molecular subtypes. The combination of NLR and PLR may reflect patients' immunogenic phenotype. Low levels of both NLR and PLR may thus indicate a status of immune system activation that may predict pCR in breast cancer patients treated with NACT

    Prognostic Factors for Overall Survival In Chronic Myeloid Leukemia Patients: A Multicentric Cohort Study by the Italian CML GIMEMA Network

    Get PDF
    An observational prospective study was conducted by the CML Italian network to analyze the role of baseline patient characteristics and first line treatments on overall survival and CML-related mortality in 1206 newly diagnosed CML patients, 608 treated with imatinib (IMA) and 598 with 2nd generation tyrosine kinase inhibitors (2GTKI). IMA-treated patients were much older (median age 69 years, IQR 58-77) than the 2GTKI group (52, IQR 41-63) and had more comorbidities. Estimated 4-year overall survival of the entire cohort was 89% (95%CI 85.9-91.4). Overall, 73 patients (6.1%) died: 17 (2.8%) in the 2GTKI vs 56 (9.2%) in the IMA cohort (adjusted HR=0.50; 95% CI=0.26-0.94), but no differences were detected for CML-related mortality (10 (1.7%) vs 11 (1.8%) in the 2GTKIs vs IMA cohort (sHR=1.61; 0.52-4.96). The ELTS score was associated to CML mortality (high risk vs low, HR=9.67; 95%CI 2.94-31.74; p<0.001), while age (per year, HR=1.03; 95%CI 1.00-1.06; p=0.064), CCI (4-5 vs 2, HR=5.22; 95%CI 2.56-10.65; p<0.001), ELTS score (high risk vs low, HR=3.11; 95%CI 1.52-6.35, p=0.002) and 2GTKI vs IMA (HR=0.26; 95%CI 0.10-0.65, p=0.004) were associated to an increased risk of non-related CML mortality. The ELTS score showed a better discriminant ability than the Sokal score in all comparisons

    Determinants of frontline tyrosine kinase inhibitor choice for patients with chronic-phase chronic myeloid leukemia: A study from the Registro Italiano LMC and Campus CML

    Get PDF
    Background: Imatinib, dasatinib, and nilotinib are tyrosine kinase inhibitors (TKIs) approved in Italy for frontline treatment of chronic-phase chronic myeloid leukemia (CP-CML). The choice of TKI is based on a combined evaluation of the patient's and the disease characteristics. The aim of this study was to analyze the use of frontline TKI therapy in an unselected cohort of Italian patients with CP-CML to correlate the choice with the patient's features. Methods: A total of 1967 patients with CP-CML diagnosed between 2012 and 2019 at 36 centers throughout Italy were retrospectively evaluated; 1089 patients (55.4%) received imatinib and 878 patients (44.6%) received a second-generation (2G) TKI. Results: Second-generation TKIs were chosen for most patients aged <45 years (69.2%), whereas imatinib was used in 76.7% of patients aged >65 years (p < .001). There was a predominant use of imatinib in intermediate/high European long-term survival risk patients (60.0%/66.0% vs. 49.7% in low-risk patients) and a limited use of 2G-TKIs in patients with comorbidities such as hypertension, diabetes, chronic obstructive pulmonary disease, previous neoplasms, ischemic heart disease, or stroke and in those with >3 concomitant drugs. We observed a greater use of imatinib (61.1%) in patients diagnosed in 2018-2019 compared to 2012-2017 (53.2%; p = .002). In multivariable analysis, factors correlated with imatinib use were age > 65 years, spleen size, the presence of comorbidities, and ≥3 concomitant medications. Conclusions: This observational study of almost 2000 cases of CML shows that imatinib is the frontline drug of choice in 55% of Italian patients with CP-CML, with 2G-TKIs prevalently used in younger patients and in those with no concomitant clinical conditions. Introduction of the generic formulation in 2018 seems to have fostered imatinib use

    Disease-specific and general health-related quality of life in newly diagnosed prostate cancer patients: The Pros-IT CNR study

    Get PDF

    Multiple Myeloma Treatment in Real-world Clinical Practice : Results of a Prospective, Multinational, Noninterventional Study

    Get PDF
    Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: The authors would like to thank all patients and their families and all the EMMOS investigators for their valuable contributions to the study. The authors would like to acknowledge Robert Olie for his significant contribution to the EMMOS study. Writing support during the development of our report was provided by Laura Mulcahy and Catherine Crookes of FireKite, an Ashfield company, a part of UDG Healthcare plc, which was funded by Millennium Pharmaceuticals, Inc, and Janssen Global Services, LLC. The EMMOS study was supported by research funding from Janssen Pharmaceutical NV and Millennium Pharmaceuticals, Inc. Funding Information: M.M. has received personal fees from Janssen, Celgene, Amgen, Bristol-Myers Squibb, Sanofi, Novartis, and Takeda and grants from Janssen and Sanofi during the conduct of the study. E.T. has received grants from Janssen and personal fees from Janssen and Takeda during the conduct of the study, and grants from Amgen, Celgene/Genesis, personal fees from Amgen, Celgene/Genesis, Bristol-Myers Squibb, Novartis, and Glaxo-Smith Kline outside the submitted work. M.V.M. has received personal fees from Janssen, Celgene, Amgen, and Takeda outside the submitted work. M.C. reports honoraria from Janssen, outside the submitted work. M. B. reports grants from Janssen Cilag during the conduct of the study. M.D. has received honoraria for participation on advisory boards for Janssen, Celgene, Takeda, Amgen, and Novartis. H.S. has received honoraria from Janssen-Cilag, Celgene, Amgen, Bristol-Myers Squibb, Novartis, and Takeda outside the submitted work. V.P. reports personal fees from Janssen during the conduct of the study and grants, personal fees, and nonfinancial support from Amgen, grants and personal fees from Sanofi, and personal fees from Takeda outside the submitted work. W.W. has received personal fees and grants from Amgen, Celgene, Novartis, Roche, Takeda, Gilead, and Janssen and nonfinancial support from Roche outside the submitted work. J.S. reports grants and nonfinancial support from Janssen Pharmaceutical during the conduct of the study. V.L. reports funding from Janssen Global Services LLC during the conduct of the study and study support from Janssen-Cilag and Pharmion outside the submitted work. A.P. reports employment and shareholding of Janssen (Johnson & Johnson) during the conduct of the study. C.C. reports employment at Janssen-Cilag during the conduct of the study. C.F. reports employment at Janssen Research and Development during the conduct of the study. F.T.B. reports employment at Janssen-Cilag during the conduct of the study. The remaining authors have stated that they have no conflicts of interest. Publisher Copyright: © 2018 The AuthorsMultiple myeloma (MM) remains an incurable disease, with little information available on its management in real-world clinical practice. The results of the present prospective, noninterventional observational study revealed great diversity in the treatment regimens used to treat MM. Our results also provide data to inform health economic, pharmacoepidemiologic, and outcomes research, providing a framework for the design of protocols to improve the outcomes of patients with MM. Background: The present prospective, multinational, noninterventional study aimed to document and describe real-world treatment regimens and disease progression in multiple myeloma (MM) patients. Patients and Methods: Adult patients initiating any new MM therapy from October 2010 to October 2012 were eligible. A multistage patient/site recruitment model was applied to minimize the selection bias; enrollment was stratified by country, region, and practice type. The patient medical and disease features, treatment history, and remission status were recorded at baseline, and prospective data on treatment, efficacy, and safety were collected electronically every 3 months. Results: A total of 2358 patients were enrolled. Of these patients, 775 and 1583 did and did not undergo stem cell transplantation (SCT) at any time during treatment, respectively. Of the patients in the SCT and non-SCT groups, 49%, 21%, 14%, and 15% and 57%, 20%, 12% and 10% were enrolled at treatment line 1, 2, 3, and ≥ 4, respectively. In the SCT and non-SCT groups, 45% and 54% of the patients had received bortezomib-based therapy without thalidomide/lenalidomide, 12% and 18% had received thalidomide/lenalidomide-based therapy without bortezomib, and 30% and 4% had received bortezomib plus thalidomide/lenalidomide-based therapy as frontline treatment, respectively. The corresponding proportions of SCT and non-SCT patients in lines 2, 3, and ≥ 4 were 45% and 37%, 30% and 37%, and 12% and 3%, 33% and 27%, 35% and 32%, and 8% and 2%, and 27% and 27%, 27% and 23%, and 6% and 4%, respectively. In the SCT and non-SCT patients, the overall response rate was 86% to 97% and 64% to 85% in line 1, 74% to 78% and 59% to 68% in line 2, 55% to 83% and 48% to 60% in line 3, and 49% to 65% and 36% and 45% in line 4, respectively, for regimens that included bortezomib and/or thalidomide/lenalidomide. Conclusion: The results of our prospective study have revealed great diversity in the treatment regimens used to manage MM in real-life practice. This diversity was linked to factors such as novel agent accessibility and evolving treatment recommendations. Our results provide insight into associated clinical benefits.publishersversionPeer reviewe
    corecore