1,183 research outputs found

    Characteristics of events with metric-to-decahectometric type II radio bursts associated with CMEs and flares in relation to SEP events

    Full text link
    A gradual solar energetic particle (SEP) event is thought to happen when particles are accelerated at a shock due to a fast coronal mass ejection (CME). To quantify what kind of solar eruptions can result in such SEP events, we have conducted detailed investigations on the characteristics of CMEs, solar flares and m-to-DH wavelength type II radio bursts (herein after m-to-DH type II bursts) for SEP-associated and non-SEP-associated events, observed during the period of 1997-2012. Interestingly, 65% of m-to-DH type II bursts associated with CMEs and flares produced SEP events. The SEP-associated CMEs have higher sky-plane mean speed, projection corrected speed, and sky-plane peak speed than those of non-SEP-associated CMEs respectively by 30%, 39%, and 25%, even though the two sets of CMEs achieved their sky-plane peak speeds at nearly similar heights within LASCO field of view. We found Pearson's correlation coefficients between the speeds of CMEs speeds and logarithmic peak intensity of SEP events are cc = 0.62 and cc = 0.58, respectively. We also found that the SEP-associated CMEs are on average of three times more decelerated (-21.52 m/s2) than the non-SEP-associated CMEs (-5.63 m/s2). The SEP-associated m type II bursts have higher frequency drift rate and associated shock speed than those of the non-SEP-associated events by 70% and 25% respectively. The average formation heights of m and DH type II radio bursts for SEP-associated events are lower than for non-SEP-associated events. 93% of SEP-associated events originate from the western hemisphere and 65% of SEP-associated events are associated with interacting CMEs. The obtained results indicate that, at least for the set of CMEs associated with m-to-DH type II bursts, SEP-associated CMEs are more energetic than those not associated with SEPs, thus suggesting that they are effective particle accelerators.Comment: 19 pages, 10 figures, 3 tables, accepted for publication by ApS

    On the escape of cosmic rays from radio galaxy cocoons

    Get PDF
    (Abridged) A model for the escape of CR particles from radio galaxy cocoons is presented here. It is assumed that the radio cocoon is poorly magnetically connected to the environment. An extreme case of this kind is an insulating boundary layer of magnetic fields, which can efficiently suppress particle escape. More likely, magnetic field lines are less organised and allow the transport of CR particles from the source interior to the surface region. For such a scenario two transport regimes are analysed: diffusion of particles along inter-phase magnetic flux tubes (leaving the cocoon) and cross field transport of particles in flux tubes touching the cocoon surface. The cross field diffusion is likely the dominate escape path, unless a significant fraction of the surface is magnetically connected to the environment. Major cluster merger should strongly enhance the particle escape by two complementary mechanisms. i) The merger shock waves shred radio cocoons into filamentary structures, allowing the CRs to easily reach the radio cocoon boundary due to the changed morphology. ii) Also efficient particle losses can be expected for radio cocoons not compressed in shock waves. There, for a short period after the sudden injection of large scale turbulence, the (anomalous) cross field diffusion can be enhanced by several orders of magnitude. This lasts until the turbulent energy cascade has reached the microscopic scales, which determine the value of the microscopic diffusion coefficients.Comment: A&A in press, 12 pages, 5 figures, minor language improvement

    Space Weather Application Using Projected Velocity Asymmetry of Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) originating from regions close to the center of the Sun are likely to be responsible for severe geomagnetic storms. It is important to predict geo-effectiveness of HCMEs using observations when they are still near the Sun. Unfortunately, coronagraphic observations do not provide true speeds of CMEs due to the projection effects. In the present paper, we present a new technique allowing estimate the space speed and approximate source location using projected speeds measured at different position angles for a given HCME (velocity asymmetry). We apply this technique to HCMEs observed during 2001-2002 and find that the improved speeds are better correlated with the travel times of HCMEs to Earth and with the magnitudes ensuing geomagnetic storms.Comment: accepted for [publication in Solar Physic

    Gains, Losses, and Life Goals Identified by Caregivers of Individuals with Disabilities in the United States

    Get PDF
    It is often reported that caregivers of individuals with disabilities experience stress as they manage caregiving responsibilities while they make the effort to balance family and work. Thirty-one caregivers of individuals with an array of disabilities in the United States completed a qualitative survey in this pilot study that asked them to identify their gains and losses from providing care and to identify their life goals. The gains from caregiving were identified as enhanced empathy and compassion, and the losses as strained family relationships, and less personal time. The most commonly identified life goals were experiencing happiness and achieving financial stability. The implications of these results on professionals’ attempts to support caregivers and their families are discussed

    Spatial Relationship between Solar Flares and Coronal Mass Ejections

    Full text link
    We report on the spatial relationship between solar flares and coronal mass ejections (CMEs) observed during 1996-2005 inclusive. We identified 496 flare-CME pairs considering limb flares (distance from central meridian > 45 deg) with soft X-ray flare size > C3 level. The CMEs were detected by the Large Angle and Spectrometric Coronagraph (LASCO) on board the Solar and Heliospheric Observatory (SOHO). We investigated the flare positions with respect to the CME span for the events with X-class, M-class, and C-class flares separately. It is found that the most frequent flare site is at the center of the CME span for all the three classes, but that frequency is different for the different classes. Many X-class flares often lie at the center of the associated CME, while C-class flares widely spread to the outside of the CME span. The former is different from previous studies, which concluded that no preferred flare site exists. We compared our result with the previous studies and conclude that the long-term LASCO observation enabled us to obtain the detailed spatial relation between flares and CMEs. Our finding calls for a closer flare-CME relationship and supports eruption models typified by the CSHKP magnetic reconnection model.Comment: 7 pages; 4 figures; Accepted by the Astrophysical Journa

    Cosmic-ray Acceleration at Ultrarelativistic Shock Waves: Effects of a "Realistic" Magnetic Field Structure

    Full text link
    First-order Fermi acceleration processes at ultrarelativistic shocks are studied with Monte Carlo simulations. The accelerated particle spectra are derived by integrating the exact particle trajectories in a turbulent magnetic field near the shock. ''Realistic'' features of the field structure are included. We show that the main acceleration process at superluminal shocks is the particle compression at the shock. Formation of energetic spectral tails is possible in a limited energy range only for highly perturbed magnetic fields, with cutoffs occuring at low energies within the resonance energy range considered. These spectral features result from the anisotropic character of particle transport in the downstream magnetic field, where field compression produces effectively 2D perturbations. Because of the downstream field compression, the acceleration process is inefficient in parallel shocks for larger turbulence amplitudes, and features observed in oblique shocks are recovered. For small-amplitude turbulence, wide-energy range particle spectra are formed and modifications of the process due to the existence of long-wave perturbations are observed. In both sub- and superluminal shocks, an increase of \gamma leads to steeper spectra with lower cut-off energies. The spectra obtained for the ``realistic'' background conditions assumed here do not converge to the ``universal'' spectral index claimed in the literature. Thus the role of the first-order Fermi process in astrophysical sources hosting relativistic shocks requires serious reanalysis.Comment: submitted to Ap

    Statistical Analysis of Periodic Oscillations in LASCO Coronal Mass Ejection Speeds

    Get PDF
    A large set of coronal mass ejections (CMEs, 3463) has been selected to study their periodic oscillations in speed in the Solar and Heliospheric Observatory (SOHO) missions Large Angle and Spectrometric Coronagraph (LASCO) field of view. These events, reported in the SOHOLASCO catalog in the period of time 19962004, were selected based on having at least 11 height-time measurements. This selection criterion allows us to construct at least ten-point speed distance profiles and evaluate kinematic properties of CMEs with a reasonable accuracy. To identify quasi-periodic oscillations in the speed of the CMEs a sinusoidal function was fitted to speed distance profiles and the speed time profiles. Of the considered events 22 revealed periodic velocity fluctuations. These speed oscillations have on average amplitude equal to 87 kms(exp -1) and period 7.8R /241 min (in distance-time). The study shows that speed oscillations are a common phenomenon associated with CME propagation implying that all the CMEs have a similar magnetic flux-rope structure. The nature of oscillations can be explained in terms of magnetohydrodynamic (MHD) waves excited during the eruption process. More accurate detection of these modes could, in the future, enable us to characterize magnetic structures in space (space seismology)

    Prediction Space Weather Using an Asymmetric Cone Model for Halo CMEs

    Full text link
    Halo coronal mass ejections (HCMEs) are responsible of the most severe geomagnetic storms. A prediction of their geoeffectiveness and travel time to Earth's vicinity is crucial to forecast space weather. Unfortunately coronagraphic observations are subjected to projection effects and do not provide true characteristics of CMEs. Recently, Michalek (2006, {\it Solar Phys.}, {\bf237}, 101) developed an asymmetric cone model to obtain the space speed, width and source location of HCMEs. We applied this technique to obtain the parameters of all front-sided HCMEs observed by the SOHO/LASCO experiment during a period from the beginning of 2001 until the end of 2002 (solar cycle 23). These parameters were applied for the space weather forecast. Our study determined that the space speeds are strongly correlated with the travel times of HCMEs within Earth's vicinity and with the magnitudes related to geomagnetic disturbances
    corecore