29 research outputs found
Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao
The spatial location and timing of plant developmental events are largely regulated by the well balanced effects of auxin and cytokinin phytohormone interplay. Together with transport, localized metabolism regulates the concentration gradients of their bioactive forms, ultimately eliciting growth responses. In order to explore the dynamics of auxin and cytokinin metabolism during early seedling growth in Theobroma cacao (cacao), we have performed auxin and cytokinin metabolite profiling in hypocotyls and root developmental sections at different times by using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry (UHPLC-MS/MS). Our work provides quantitative characterization of auxin and cytokinin metabolites throughout early root and hypocotyl development and identifies common and distinctive features of auxin and cytokinin metabolism during cacao seedling development
iP & OEIP - Cytokinin Micro Application Modulates Root Development with High Spatial Resolution
State-of-the-art technology based on organic electronics can be used as a flow-free delivery method for organic substances with high spatial resolution. Such highly targeted drug micro applications can be used in plant research for the regulation of physiological processes on tissue and cellular levels. Here, for the first time, an organic electronic ion pump (OEIP) is reported that can transport an isoprenoid-type cytokinin, N-6-isopentenyladenine (iP), to intact plants. Cytokinins (CKs) are plant hormones involved in many essential physiological processes, including primary root (PR) and lateral root (LR) development. Using the Arabidopsis thaliana root as a model system, efficient iP delivery is demonstrated with a biological output - cytokinin-related PR and LR growth inhibition. The spatial resolution of iP delivery, defined for the first time for an organic compound, is shown to be less than 1 mm, exclusively affecting the OEIP-targeted LR. Results from the application of the high-resolution OIEP treatment method confirm previously published findings showing that the influence of CKs may vary at different stages of LR development. Thus, OEIP-based technologies offer a novel, electronically controlled method for phytohormone delivery that could contribute to unraveling cytokinin functions during different developmental processes with high specificity
Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root
Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent
Spatial-temporal Distribution of Mosquito Larval Hot Spots in Papoli, Uganda: A Community-Based Approach to Mosquito Control
Mosquito species of the Anopheles gambaie complex are the predominant vectors of malaria transmission throughout sub-Saharan Africa. These mosquitoes tend to be endophilic, as well as anthropophilic, making them prime candidates for disease transmission. Within the same region, related mosquito vectors play a significant role in the transmission of additional human and zoonotic diseases. Furthermore, mosquito nuisance biting is an immense issue that cannot be ignored in terms of its impact on African communities. Depending on the respective factors involved, mosquito control programs throughout the continent have attempted to tackle these issues in a multitude of ways. This research approached the issue by developing and integrating an American-style mosquito control district within the eastern Ugandan community of Papoli. The basic structure of such a district was blended with a community-based approach, employing local community members and leaders, thus ensuring an effective and sustainable program. A guide detailing all aspects and steps needed to properly develop and implement such a program is outlined
IPT9, a cis-zeatin cytokinin biosynthesis gene, promotes root growth
Cytokinin and auxin are plant hormones that coordinate many aspects of plant development. Their interactions in plant underground growth are well established, occurring at the levels of metabolism, signaling, and transport. Unlike many plant hormone classes, cytokinins are represented by more than one active molecule. Multiple mutant lines, blocking specific parts of cytokinin biosynthetic pathways, have enabled research in plants with deficiencies in specific cytokinin-types. While most of these mutants have confirmed the impeding effect of cytokinin on root growth, the ipt29 double mutant instead surprisingly exhibits reduced primary root length compared to the wild type. This mutant is impaired in cis-zeatin (cZ) production, a cytokinin-type that had been considered inactive in the past. Here we have further investigated the intriguing ipt29 root phenotype, opposite to known cytokinin functions, and the (bio)activity of cZ. Our data suggest that despite the ipt29 short-root phenotype, cZ application has a negative impact on primary root growth and can activate a cytokinin response in the stele. Grafting experiments revealed that the root phenotype of ipt29 depends mainly on local signaling which does not relate directly to cytokinin levels. Notably, ipt29 displayed increased auxin levels in the root tissue. Moreover, analyses of the differential contributions of ipt2 and ipt9 to the ipt29 short-root phenotype demonstrated that, despite its deficiency on cZ levels, ipt2 does not show any root phenotype or auxin homeostasis variation, while ipt9 mutants were indistinguishable from ipt29. We conclude that IPT9 functions may go beyond cZ biosynthesis, directly or indirectly, implicating effects on auxin homeostasis and therefore influencing plant growth
PIN-driven auxin transport emerged early in streptophyte evolution
PIN-FORMED (PIN) transporters mediate directional, intercellular movement of the phytohormone auxin in land plants. To elucidate the evolutionary origins of this developmentally crucial mechanism, we analysed the single PIN homologue of a simple green alga Klebsormidium flaccidum. KfPIN functions as a plasma membrane-localized auxin exporter in land plants and heterologous models. While its role in algae remains unclear, PIN-driven auxin export is probably an ancient and conserved trait within streptophytes
Plant roots sense soil compaction through restricted ethylene diffusion
© 2021 The Authors, some rights reserved. Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction
A WOX/Auxin Biosynthesis Module Controls Growth to Shape Leaf Form
A key challenge in biology is to understand how the regional control of cell growth gives rise to final organ forms. Plant leaves must coordinate growth along both the proximodistal and mediolateral axes to produce their final shape. However, the cell-level mechanisms controlling this coordination remain largely unclear. Here, we show that, in A. thaliana, WOX5, one of the WUSCHEL-RELATED HOMEOBOX (WOX) family of homeobox genes, acts redundantly with WOX1 and WOX3 (PRESSED FLOWER [PRS]) to control leaf shape. Through genetics and hormone measurements, we find that these WOXs act in part through the regional control of YUCCA (YUC) auxin biosynthetic gene expression along the leaf margin. The requirement for WOXmediated YUC expression in patterning of leaf shape cannot be bypassed by the epidermal expression of YUC, indicating that the precise domain of auxin biosynthesis is important for leaf form. Using time-lapse growth analysis, we demonstrate that WOX-mediated auxin biosynthesis organizes a proximodistal growth gradient that promotes lateral growth and consequently the characteristic ellipsoid A. thaliana leaf shape. We also provide evidence that WOX proteins shape the proximodistal gradient of differentiation by inhibiting differentiation proximally in the leaf blade and promoting it distally. This regulation allows sustained growth of the blade and enables a leaf to attain its final form. In conclusion, we show that the WOX/auxin regulatory module shapes leaf form by coordinating growth along the proximodistal and mediolateral leaf axes
Alterations in hormonal signals spatially coordinate distinct responses to DNA double-strand breaks in Arabidopsis roots
Plants have a high ability to cope with changing environments and grow continuously throughout life. However, the mechanisms by which plants strike a balance between stress response and organ growth remain elusive. Here, we found that DNA double-strand breaks enhance the accumulation of cytokinin hormones through the DNA damage signaling pathway in the Arabidopsis root tip. Our data showed that activation of cytokinin signaling suppresses the expression of some of the PIN-FORMED genes that encode efflux carriers of another hormone, auxin, thereby decreasing the auxin signals in the root tip and causing cell cycle arrest at G2 phase and stem cell death. Elevated cytokinin signaling also promotes an early transition from cell division to endoreplication in the basal part of the root apex. We propose that plant hormones spatially coordinate differential DNA damage responses, thereby maintaining genome integrity and minimizing cell death to ensure continuous root growth