1,204 research outputs found
Perspectives: Quantum Mechanics on Phase Space
The basic ideas in the theory of quantum mechanics on phase space are
illustrated through an introduction of generalities, which seem to underlie
most if not all such formulations and follow with examples taken primarily from
kinematical particle model descriptions exhibiting either Galileian or
Lorentzian symmetry. The structures of fundamental importance are the relevant
(Lie) groups of symmetries and their homogeneous (and associated) spaces that,
in the situations of interest, also possess Hamiltonian structures. Comments
are made on the relation between the theory outlined and a recent paper by
Carmeli, Cassinelli, Toigo, and Vacchini.Comment: "Quantum Structures 2004" - Meeting of the International Quantum
Structures Association; Denver, Colorado; 17-22 July, 200
Inferring combinatorial association logic networks in multimodal genome-wide screens
Motivation: We propose an efficient method to infer combinatorial association logic networks from multiple genome-wide measurements from the same sample. We demonstrate our method on a genetical genomics dataset, in which we search for Boolean combinations of multiple genetic loci that associate with transcript levels
Slabs of stabilized jellium: Quantum-size and self-compression effects
We examine thin films of two simple metals (aluminum and lithium) in the
stabilized jellium model, a modification of the regular jellium model in which
a constant potential is added inside the metal to stabilize the system for a
given background density. We investigate quantum-size effects on the surface
energy and the work function. For a given film thickness we also evaluate the
density yielding energy stability, which is found to be slightly higher than
the equilibrium density of the bulk system and to approach this value in the
limit of thick slabs. A comparison of our self-consistent calculations with the
predictions of the liquid-drop model shows the validity of this model.Comment: 7 pages, 6 figures, to appear in Phys. Rev.
Lipidomic Analysis of Plasma from Healthy Men and Women Shows Phospholipid Class and Molecular Species Differences between Sexes
The phospholipid composition of lipoproteins is determined by the specificity of hepatic phospholipid biosynthesis. Plasma phospholipid 20:4n-6 and 22:6n-3 concentrations are higher in women than in men. We used this sex difference in a lipidomics analysis of the impact of endocrine factors on the phospholipid class and molecular species composition of fasting plasma from young men and women. Diester species predominated in all lipid classes measured. 20/54 Phosphatidylcholine (PtdCho) species were alkyl ester, 15/48 phosphatidylethanolamine (PtdEtn) species were alkyl ester, and 12/48 PtdEtn species were alkenyl ester. There were no significant differences between sexes in the proportions of alkyl PtdCho species. The proportion of alkyl ester PtdEtn species was greater in women than men, while the proportion of alkenyl ester PtdEtn species was greater in men than women. None of the phosphatidylinositol (PtdIns) or phosphatidylserine (PtdSer) molecular species contained ether-linked fatty acids. The proportion of PtdCho16:0_22:6, and the proportions of PtdEtn O-16:0_20:4 and PtdEtn O-18:2_20:4 were greater in women than men. There were no sex differences in PtdIns and PtdSer molecular species compositions. These findings show that plasma phospholipids can be modified by sex. Such differences in lipoprotein phospholipid composition could contribute to sexual dimorphism in patterns of health and disease
Engineering the stereoisomeric structure of seed oil to mimic human milk fat
Human milk fat substitute (HMFS) is a class of structured lipid that is widely used as an ingredient in infant formulas. Like human milk fat, HMFS is characterised by enrichment of palmitoyl (C16:0) groups specifically at the middle (sn-2 or β) position on the glycerol backbone, and there is evidence that triacylglycerol (TAG) with this unusual stereoisomeric structure provides nutritional benefits. HMFS production currently relies on enzyme-based catalysis since there is no appropriate biological source of fat with the equivalent structure, other than humans. Most of the fat currently used in infant formulas is obtained from plants, which exclude C16:0 from the middle position. In this study we have modified the metabolic pathway for TAG biosynthesis in the model oilseed Arabidopsis thaliana to increase the percentage of C16:0 at the middle (versus outer) positions by more than 20-fold (i.e. from ~3% in wild type to >70% in our final iteration). This level of C16:0 enrichment is comparable to human milk fat. We achieved this by relocating the C16:0-specific chloroplast isoform of the enzyme lysophosphatidic acid acyltransferase (LPAT) to the endoplasmic reticulum so that it functions within the cytosolic glycerolipid biosynthetic pathway to esterify C16:0 to the middle position. We then suppressed endogenous LPAT activity to relieve competition and knocked out phosphatidylcholine:diacylglycerol cholinephosphotransferase activity to promote the flux of newly-made diacylglycerol directly into TAG. Applying this technology to oilseed crops might provide a new source of HMFS for infant formula
Blood Cholinesterases from Washington State Orchard Workers
Court-ordered monitoring of blood cholinesterases (ChEs) from orchard workers in Washington State is underway. In 2008, the mean red blood cell acetylcholinesterase (AChE, EC 3.1.1.7) activity was 9.65 ± 1.11 μmoles/min/ml (n = 1,793) and the mean serum (BChE, 3.1.1.6) activity was 5.19 ± 0.90 μmoles/min/ml (n = 1,811). Determinations were made using the Ellman assay and automated equipment of Pathology Associates Medical Laboratories (PAML), Spokane, Washington
The role of mutation rate variation and genetic diversity in the architecture of human disease
Background
We have investigated the role that the mutation rate and the structure of genetic variation at a locus play in determining whether a gene is involved in disease. We predict that the mutation rate and its genetic diversity should be higher in genes associated with disease, unless all genes that could cause disease have already been identified.
Results
Consistent with our predictions we find that genes associated with Mendelian and complex disease are substantially longer than non-disease genes. However, we find that both Mendelian and complex disease genes are found in regions of the genome with relatively low mutation rates, as inferred from intron divergence between humans and chimpanzees, and they are predicted to have similar rates of non-synonymous mutation as other genes. Finally, we find that disease genes are in regions of significantly elevated genetic diversity, even when variation in the rate of mutation is controlled for. The effect is small nevertheless.
Conclusions
Our results suggest that gene length contributes to whether a gene is associated with disease. However, the mutation rate and the genetic architecture of the locus appear to play only a minor role in determining whether a gene is associated with disease
Differential postprandial incorporation of 20:5n-3 and 22:6n-3 into individual plasma triacylglycerol and phosphatidylcholine molecular species in humans
The mechanisms by which digested fat is absorbed and transported in the circulation are well documented. However, it is uncertain whether the molecular species composition of dietary fats influences the molecular species composition of meal-derived lipids in blood. This may be important because enzymes that remove meal-derived fatty acids from the circulation exhibit differential activities towards individual lipid molecular species. To determine the effect of consuming oils with different molecular compositions on the incorporation of 20:5n-3 and 22:6n-3 into plasma lipid molecular species. Men and women (18 - 30 years) consumed standardised meals containing 20:5n-5 and 22:6n-3 (total 450mg) provided by an oil from transgenic Camelina sativa (CSO) or a blended fish oil (BFO) which differed in the composition of 20:5n-3 and 22:6n-3 – containing molecular species. Blood was collected during the subsequent 8 hours. Samples were analysed by liquid chromatography-mass spectrometry. The molecular species composition of the test oils was distinct from the composition of plasma triacylglycerol (TG) or phosphatidylcholine (PC) molecular species at baseline and at 1.5 or 6 hours after the meal. The rank order by concentration of both plasma PC and TG molecular species at baseline was maintained during the postprandial period. 20:5n-3 and 22:6n-3 were incorporated preferentially into plasma PC compared to plasma TG. Together these findings suggest that the composition of dietary lipids undergoes extensive rearrangement after absorption, such that plasma TG and PC maintain their molecular species composition, which may facilitate lipase activities in blood and/or influence lipoprotein structural stability and function
A taxonomy of errors for information systems
We provide a full characterization of computational error states for information systems. The class of errors considered is general enough to include human rational processes, logical reasoning, scientific progress and data processing in some functional programming languages. The aim is to reach a full taxonomy of error states by analysing the recovery and processing of data. We conclude by presenting machine-readable checking and resolve algorithms
- …