113 research outputs found

    Plasmonic atoms and plasmonic molecules

    Get PDF
    The proposed paradigm of plasmonic atoms and plasmonic molecules allows one to describe and predict the strongly localized plasmonic oscillations in the clusters of nanoparticles and some other nanostructures in uniform way. Strongly localized plasmonic molecules near the contacting surfaces might become the fundamental elements (by analogy with Lego bricks) for a construction of fully integrated opto-electronic nanodevices of any complexity and scale of integration.Comment: 30 pages, 16 figure

    Recoil Polarization for Delta Excitation in Pion Electroproduction

    Get PDF
    We measured angular distributions of recoil-polarization response functions for neutral pion electroproduction for W=1.23 GeV at Q^2=1.0 (GeV/c)^2, obtaining 14 separated response functions plus 2 Rosenbluth combinations; of these, 12 have been observed for the first time. Dynamical models do not describe quantities governed by imaginary parts of interference products well, indicating the need for adjusting magnitudes and phases for nonresonant amplitudes. We performed a nearly model-independent multipole analysis and obtained values for Re(S1+/M1+)=-(6.84+/-0.15)% and Re(E1+/M1+)=-(2.91+/-0.19)% that are distinctly different from those from the traditional Legendre analysis based upon M1+ dominance and sp truncation.Comment: 5 pages, 2 figures, for PR

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Dynamics of the 16^{16}O(e,e'p) cross section at high missing energies

    Get PDF
    We measured the cross section and response functions (R_L, R_T, and R_LT) for the 16O(e,e'p) reaction in quasielastic kinematics for missing energies 25 60 MeV and P_miss > 200 MeV/c, the cross section is relatively constant. Calculations which include contributions from pion exchange currents, isobar currents and short-range correlations account for the shape and the transversity but only for half of the magnitude of the measured cross section

    Frequently Asked Questions on Coronavirus Disease 2019 Vaccination for Hematopoietic Cell Transplantation and Chimeric Antigen Receptor T-Cell Recipients From the American Society for Transplantation and Cellular Therapy and the American Society of Hematology

    Get PDF
    Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), disproportionately affects immunocompromised and elderly patients. Not only are hematopoietic cell transplantation (HCT) and chimeric antigen receptor (CAR) T-cell recipients at greater risk for severe COVID-19 and COVID-19–related complications, but they also may experience suboptimal immune responses to currently available COVID-19 vaccines. Optimizing the use, timing, and number of doses of the COVID-19 vaccines in these patients may provide better protection against SARS-CoV-2 infection and better outcomes after infection. To this end, current guidelines for COVID-19 vaccination in HCT and CAR T-cell recipients from the American Society of Transplantation and Cellular Therapy Transplant Infectious Disease Special Interest Group and the American Society of Hematology are provided in a frequently asked questions format

    Q

    Full text link
    The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. The results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    The product of a Petrine circle? A reassessment of the origin and character of 1 Peter

    Get PDF
    © 2002 SAGE PublicationsRecent studies of 1 Peter, especially by John Elliott, have sought to rescue the letter from its assimilation to the Pauline tradition and to establish the view, now widely held, that 1 Peter is the distinctive product of a Petrine circle. After examining the traditions in 1 Peter, both Pauline and non-Pauline, and the names in the letter (Silvanus, Mark and Peter), this essay argues that there is no substantial evidence, either inside or outside the letter, to support the view of 1 Peter as originating from a specifically Petrine group. It is much more plausibly seen as reflecting the consolidation of early Christian traditions in Roman Christianity. Despite the scholarly majority currently in its favour, the view of 1 Peter as the distinctive product of a Petrine tradition from a Petrine circle should therefore be rejected

    The present and future of QCD

    Get PDF
    This White Paper presents an overview of the current status and future perspective of QCD research, based on the community inputs and scientific conclusions from the 2022 Hot and Cold QCD Town Meeting. We present the progress made in the last decade toward a deep understanding of both the fundamental structure of the sub-atomic matter of nucleon and nucleus in cold QCD, and the hot QCD matter in heavy ion collisions. We identify key questions of QCD research and plausible paths to obtaining answers to those questions in the near future, hence defining priorities of our research over the coming decades

    A microprocessor-based instrument for nystagmus analysis

    No full text
    corecore