8 research outputs found

    Flow Cytometry as a Diagnostic Tool in the Early Diagnosis of Aggressive Lymphomas Mimicking Life-Threatening Infection

    Get PDF
    Aggressive lymphomas can present with symptoms mimicking life-threatening infection. Flow cytometry (FC) is usually recommended for the classification and staging of lymphomas in patients with organomegaly and atypical cells in effusions and blood, after the exclusion of other possible diagnoses. FC may also have a place in the initial diagnostic investigation of aggressive lymphoma. Three cases are presented here of highly aggressive lymphomas in young adults, which presented with the clinical picture of fever of unknown origin (FUO) in patients severely ill. All followed a life-threatening clinical course, and two developed the hemophagocytic syndrome (HPS), but microbiological, immunological, and morphological evaluation and immunohistochemistry (IHC) failed to substantiate an early diagnosis. FC was the technique that provided conclusive diagnostic evidence of lymphoma, subsequently verified by IHC. Our experience with these three cases highlights the potential role of FC as an adjunct methodology in the initial assessment of possible highly aggressive lymphoma presenting with the signs and symptoms of life-threatening infection, although the definitive diagnosis should be established by biopsy. In such cases, FC can contribute to the diagnosis of lymphoma, independently of the presence of HPS

    Characterisation of gametophytic mutants affecting pollen function in Arabidopsis thaliana

    Full text link
    The progamic phase of plant reproductive development involves events from pollen germination to gamete fusion. Physiological studies suggest that complex mechanisms are involved in this pathway. In order to identify gametophytic genes which function in this pathway, an insertional mutagenesis screen based on segregation ratio distortion was performed on a population of 4094 independent dSpm transposon insertion lines. This screen did not produce any mutants of interest, but two mutants, seth4 and seth7, were identified from a similar screen of Ds transposon insertion lines, seth4 and seth7 showed stably reduced segregation ratios arising from reduced gametophytic transmission and reciprocal crosses showed no (seth4) or severely reduced (seth7) transmission of the antibiotic resistance marker only through pollen. In both mutants, pollen morphology was normal but pollen germination was severely affected. In seth4, the insertion disrupted the coding region of a gene encoding an armadillo (ARM) repeat protein. In seth7, the transposon was inserted within the 3'-UTR of a gene encoding a putative serine/threonine protein kinase. A wild-type copy of SETH4 complemented the seth4 mutation and restored male transmission. SETH4 is the founding member of a discrete Arabidopsis gene family that contains two SETH FOUR- LIKE genes, SFL1 and SFL2, SETH4 was found to be preferentially expressed in the male gametophyte while SFL1 and SFL2 were expressed exclusively in the sporophyte. SETH4, SFL1 and SFL2 proteins, when fused to GFP, suggest cytoplasmic location in transient expression assays. In this work two mutants identified as essential for the male gametophyte during the progamic phase have been phenotypically characterised. SETH4 was analysed using genetic, molecular and bioinformatic analyses and is proposed to be part of a novel molecular pathway controlling cellular growth in the gametophyte

    Seawater carbonate chemistry and processes during experiments with marine mussel, Mytilus galloprovincialis, 2005

    No full text
    In the context of future scenarios of progressive accumulation of anthropogenic CO2 in marine surface waters, the present study addresses the effects of long-term hypercapnia on a Mediterranean bivalve, Mytilus galloprovincialis. Sea-water pH was lowered to a value of 7.3 by equilibration with elevated CO2 levels. This is close to the maximum pH drop expected in marine surface waters during atmosextracellular pHric CO2 accumulation. Intra- and extracellular acid-base parameters as well as changes in metabolic rate and growth were studied under both normocapnia and hypercapnia. Long-term hypercapnia caused a permanent reduction in haemolymph pH. To limit the degree of acidosis, mussels increased haemolymph bicarbonate levels, which are derived mainly from the dissolution of shell CaCO3. Intracellular pH in various tissues was at least partly compensated; no deviation from control values occurred during long-term measurements in whole soft-body tissues. The rate of oxygen consumption fell significantly, indicating a lower metabolic rate. In line with previous reports, a close correlation became evident between the reduction in extracellular pH and the reduction in metabolic rate of mussels during hypercapnia. Analysis of frequency histograms of growth rate revealed that hypercapnia caused a slowing of growth, possibly related to the reduction in metabolic rate and the dissolution of shell CaCO3 as a result of extracellular acidosis. In addition, increased nitrogen excretion by hypercapnic mussels indicates the net degradation of protein, thereby contributing to growth reduction. The results obtained in the present study strongly indicate that a reduction in sea-water pH to 7.3 may be fatal for the mussels. They also confirm previous observations that a reduction in sea-water pH below 7.5 is harmful for shelled molluscs

    Chromatin dynamics during interphase and cell division: similarities and differences between model and crop plants.

    No full text
    Genetic information in the cell nucleus controls organismal development, responses to the environment and finally ensures own transmission to the next generations. To achieve so many different tasks, the genetic information is associated with structural and regulatory proteins, which orchestrate nuclear functions in time and space. Furthermore, plant life strategies require chromatin plasticity to allow a rapid adaptation to abiotic and biotic stresses. Here, we summarize current knowledge on the organisation of plant chromatin and dynamics of chromosomes during interphase and mitotic and meiotic cell divisions for model and crop plants differing as to the genome size, ploidy and amount of genomic resources available. The existing data indicate that chromatin changes accompany most (if not all) cellular processes and that there are both shared and unique themes in the chromatin structure and global chromosome dynamics among species. Ongoing efforts to understand the molecular mechanisms involved in chromatin organisation and remodeling have, together with the latest genome editing tools, potential to unlock crop genomes for innovative breeding strategies and improvements of various traits

    Analysis of transposon insertion mutants highlights the diversity of mechanisms underlying male progamic development in Arabidopsis.

    No full text
    To identify genes with essential roles in male gametophytic development, including postpollination (progamic) events, we have undertaken a genetic screen based on segregation ratio distortion of a transposon-borne kanamycin-resistance marker. In a population of 3359 Arabidopsis Ds transposon insertion lines, we identified 20 mutants with stably reduced segregation ratios arising from reduced gametophytic transmission. All 20 mutants showed strict cosegregation of Ds and the reduced gametophytic transmission phenotype. Among these, 10 mutants affected both male and female transmission and 10 mutants showed male-specific transmission defects. Four male and female (ungud) mutants and 1 male-specific mutant showed cellular defects in microspores and/or in developing pollen. The 6 remaining ungud mutants and 9 male-specific (seth) mutants affected pollen functions during progamic development. In vitro and in vivo analyses are reported for 5 seth mutants. seth6 completely blocked pollen germination, while seth7 strongly reduced pollen germination efficiency and tube growth. In contrast, seth8, seth9, or seth10 pollen showed reduced competitive ability that was linked to slower rates of pollen tube growth. Gene sequences disrupted in seth insertions suggest essential functions for putative SETH proteins in diverse processes including protein anchoring, cell wall biosynthesis, signaling, and metabolism

    Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants

    No full text
    A large-scale comparison of transcriptome datasets from ten evolutionarily representative species identifies general patterns on the genomic evolution of various plant organs. Among various insights, the authors find that the origin of organ-specific gene families predate the origin of the organs themselves. The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function

    Comparative transcriptomic analysis reveals conserved programmes underpinning organogenesis and reproduction in land plants

    Full text link
    The appearance of plant organs mediated the explosive radiation of land plants, which shaped the biosphere and allowed the establishment of terrestrial animal life. The evolution of organs and immobile gametes required the coordinated acquisition of novel gene functions, the co-option of existing genes and the development of novel regulatory programmes. However, no large-scale analyses of genomic and transcriptomic data have been performed for land plants. To remedy this, we generated gene expression atlases for various organs and gametes of ten plant species comprising bryophytes, vascular plants, gymnosperms and flowering plants. A comparative analysis of the atlases identified hundreds of organ- and gamete-specific orthogroups and revealed that most of the specific transcriptomes are significantly conserved. Interestingly, our results suggest that co-option of existing genes is the main mechanism for evolving new organs. In contrast to female gametes, male gametes showed a high number and conservation of specific genes, which indicates that male reproduction is highly specialized. The expression atlas capturing pollen development revealed numerous transcription factors and kinases essential for pollen biogenesis and function
    corecore