349 research outputs found

    Draft genome sequences of <i>Pantoea agglomerans</i> and <i>Pantoea vagans</i> isolates associated with termites

    Get PDF
    The genus Pantoea incorporates many economically and clinically important species. The plant-associated species, Pantoea agglomerans and Pantoea vagans, are closely related and are often isolated from similar environments. Plasmids conferring certain metabolic capabilities are also shared amongst these two species. The genomes of two isolates obtained from fungus-growing termites in South Africa were sequenced, assembled and annotated. A high number of orthologous genes are conserved within and between these species. The difference in genome size between P. agglomerans MP2 (4,733,829 bp) and P. vagans MP7 (4,598,703 bp) can largely be attributed to the differences in plasmid content. The genome sequences of these isolates may shed light on the common traits that enable P. agglomerans and P. vagans to co-occur in plant- and insect-associated niches.The Danish Council for Independent Research, Natural Sciences (STENO grant: Michael Poulsen), the National Research Foundation (NRF) (RCA Fellowship: Pieter De Maayer) and the NRF/Dept. of Science and Technology Centre of Excellence in Tree Health Biotechnology (CTHB), South Africa.http://www.standardsingenomics.org/index.php/sigenam2016Forestry and Agricultural Biotechnology Institute (FABI)Microbiology and Plant Patholog

    The enterobacterium <i>Trabulsiella odontotermitis</i> presents novel adaptations related to its association with fungus-growing termites

    Get PDF
    Fungus-growing termites rely on symbiotic microorganisms to help break down plant material and to obtain nutrients. Their fungal cultivar, Termitomyces, is the main plant degrader and food source for the termites, while gut bacteria complement Termitomyces in the degradation of foodstuffs, fixation of nitrogen, and metabolism of amino acids and sugars. Due to the community complexity and because these typically anaerobic bacteria can rarely be cultured, little is known about the physiological capabilities of individual bacterial members of the gut communities and their associations with the termite host. The bacterium Trabulsiella odontotermitis is associated with fungus-growing termites, but this genus is generally understudied, with only two described species. Taking diverse approaches, we obtained a solid phylogenetic placement of T. odontotermitis among the Enterobacteriaceae, investigated the physiology and enzymatic profiles of T. odontotermitis isolates, determined the localization of the bacterium in the termite gut, compared draft genomes of two T. odontotermitis isolates to those of their close relatives, and examined the expression of genes relevant to host colonization and putative symbiont functions. Our findings support the hypothesis that T. odontotermitis is a facultative symbiont mainly located in the paunch compartment of the gut, with possible roles in carbohydrate metabolism and aflatoxin degradation, while displaying adaptations to association with the termite host, such as expressing genes for a type VI secretion system which has been demonstrated to assist bacterial competition, colonization, and survival within hosts

    Forest elephant movement and habitat use in a tropical forest-grassland mosaic in Gabon

    Get PDF
    Poaching of forest elephants (Loxodonta cyclotis) for ivory has decimated their populations in Central Africa. Studying elephant movement can provide insight into habitat and resource use to reveal where, when, and why they move and guide conservation efforts. We fitted 17 forest elephants with global positioning system (GPS) collars in 2015 and 2016 in the tropical forest-grassland mosaic of the Wonga Wongué Presidential Reserve (WW), Gabon. Using the location data, we quantified movement distances, home ranges, and habitat use to examine the environmental drivers of elephant movements and predict where elephants occur spatially and temporally. Forest elephants, on average, traveled 2,840 km annually and had home ranges of 713 km2, with males covering significantly larger home ranges than females. Forest elephants demonstrated both daily and seasonal movement patterns. Daily, they moved between forest and grassland at dawn and dusk. Seasonally, they spent proportionally more time in grassland than forest during the short-wet season when grasses recruit. Forest elephants also traveled faster during the short-wet season when fruit availability was greatest, likely reflecting long, direct movements to preferred fruiting tree species. Forest elephants tended to select areas with high tree and shrub density that afford cover and browse. When villages occurred in their home ranges elephants spent a disproportionate amount of time near them, particularly in the dry season, probably for access to agricultural crops and preferred habitat. Given the importance of the grassland habitat for elephants, maintenance of the forest-grassland matrix is a conservation priority in WW. Law enforcement, outreach, and education should focus on areas of potential human-elephant conflict near villages along the borders of the reserve. GPS-tracking should be extended into multi-use areas in the peripheries of protected areas to evaluate the effects of human disturbance on elephant movements and to maintain connectivity among elephant populations in Gabon

    (η5-Penta­methyl­cyclo­penta­dien­yl)(η6-p-toluene­sulfonamide)ruthenium(II) tetra­phenyl­borate

    Get PDF
    The crystal structure of the title compound, [Ru(C10H15)(C7H9NO2S)]C24H20B, has been determined as part of our investigation into the structural and biological properties of organometallic RuII–arene–Cp* complex salts of the type [R-PhRuCp*]+·X − (where Cp* is penta­methyl­cyclo­penta­diene). Tethering the RuCp* group to the benzene ring of p-toluene­sulfonamide results in only minor changes to the mol­ecular geometry of the sulfonamide, but, together with crystallization as the [BPh4]− salt, effectively blocks involvement of the sulfonamide group in N—H⋯O hydrogen-bonding networks

    Magnetic tight-binding and the iron-chromium enthalpy anomaly

    Full text link
    We describe a self consistent magnetic tight-binding theory based in an expansion of the Hohenberg-Kohn density functional to second order, about a non spin polarised reference density. We show how a first order expansion about a density having a trial input magnetic moment leads to the Stoner--Slater rigid band model. We employ a simple set of tight-binding parameters that accurately describes electronic structure and energetics, and show these to be transferable between first row transition metals and their alloys. We make a number of calculations of the electronic structure of dilute Cr impurities in Fe which we compare with results using the local spin density approximation. The rigid band model provides a powerful means for interpreting complex magnetic configurations in alloys; using this approach we are able to advance a simple and readily understood explanation for the observed anomaly in the enthalpy of mixing.Comment: Submitted to Phys Rev

    Pharmacokinetics of the phosphatidylserine tracers 99m Tc-lactadherin and 99m Tc-annexin V in pigs

    Get PDF
    Abstract Background: Phosphatidylserine (PS) is a phospholipid normally located in the inner leaflet of the cell membrane. PS is translocated from the inner to the outer leaflet of the plasma membrane during the early stages of apoptosis and in necrosis. In cell and animal studies, reversible PS externalisation to the outer membrane leaflet has been observed in viable cells. Hence, PS markers have been proposed as markers of both reversibly and irreversibly damaged cells. The purpose of this experimental study in pigs was to investigate the kinetics of the newly introduced PS marker technetium-99m-labelled lactadherin ( 99m Tc-lactadherin) in comparison with the well-known PS trace

    Antagonistic Bacterial Interactions Help Shape Host-Symbiont Dynamics within the Fungus-Growing Ant-Microbe Mutualism

    Get PDF
    Conflict within mutually beneficial associations is predicted to destabilize relationships, and theoretical and empirical work exploring this has provided significant insight into the dynamics of cooperative interactions. Within mutualistic associations, the expression and regulation of conflict is likely more complex than in intraspecific cooperative relationship, because of the potential presence of: i) multiple genotypes of microbial species associated with individual hosts, ii) multiple species of symbiotic lineages forming cooperative partner pairings, and iii) additional symbiont lineages. Here we explore complexity of conflict expression within the ancient and coevolved mutualistic association between attine ants, their fungal cultivar, and actinomycetous bacteria (Pseudonocardia). Specifically, we examine conflict between the ants and their Pseudonocardia symbionts maintained to derive antibiotics against parasitic microfungi (Escovopsis) infecting the ants' fungus garden. Symbiont assays pairing isolates of Pseudonocardia spp. associated with fungus-growing ants spanning the phylogenetic diversity of the mutualism revealed that antagonism between strains is common. In contrast, antagonism was substantially less common between more closely related bacteria associated with Acromyrmex leaf-cutting ants. In both experiments, the observed variation in antagonism across pairings was primarily due to the inhibitory capabilities and susceptibility of individual strains, but also the phylogenetic relationships between the ant host of the symbionts, as well as the pair-wise genetic distances between strains. The presence of antagonism throughout the phylogenetic diversity of Pseudonocardia symbionts indicates that these reactions likely have shaped the symbiosis from its origin. Antagonism is expected to prevent novel strains from invading colonies, enforcing single-strain rearing within individual ant colonies. While this may align ant-actinomycete interests in the bipartite association, the presence of single strains of Pseudonocardia within colonies may not be in the best interest of the ants, because increasing the diversity of bacteria, and thereby antibiotic diversity, would help the ant-fungus mutualism deal with the specialized parasites

    A Precise Measurement of the Muon Neutrino-Nucleon Inclusive Charged Current Cross-Section off an Isoscalar Target in the Energy Range 2.5 < E_\nu < 40 GeV by NOMAD

    Get PDF
    We present a measurement of the muon neutrino-nucleon inclusive charged current cross-section, off an isoscalar target, in the neutrino energy range 2.5Eν402.5 \leq E_\nu \leq 40 GeV. The significance of this measurement is its precision, ±4\pm 4% in 2.5Eν102.5 \leq E_\nu \leq 10 GeV, and ±2.6\pm 2.6% in 10Eν4010 \leq E_\nu \leq 40 GeV regions, where significant uncertainties in previous experiments still exist, and its importance to the current and proposed long baseline neutrino oscillation experiments.Comment: 14 pages, 3 figures, submitted to Phys.Lett.
    corecore