420 research outputs found

    Refuge sharing network predicts ectoparasite load in a lizard

    Get PDF
    Living in social groups facilitates cross-infection by parasites. However, empirical studies on indirect transmission within wildlife populations are scarce. We investigated whether asynchronous overnight refuge sharing among neighboring sleepy lizards, Tiliqua rugosa, facilitates indirect transmission of its ectoparasitic tick, Amblyomma limbatum. We fitted 18 neighboring lizards with GPS recorders, observed their overnight refuge use each night over 3 months, and counted their ticks every fortnight. We constructed a transmission network to estimate the cross-infection risk based on asynchronous refuge sharing frequencies among all lizards and the life history traits of the tick. Although self-infection was possible, the network provided a powerful predictor of measured tick loads. Highly connected lizards that frequently used their neighbors’ refuges were characterized by higher tick loads. Thus, indirect contact had a major influence on transmission pathways and parasite loads. Furthermore, lizards that used many different refuges had lower cross- and self-infection risks and lower tick loads than individuals that used relatively fewer refuges. Increasing the number of refuges used by a lizard may be an important defense mechanism against ectoparasite transmission in this species. Our study provides important empirical data to further understand how indirectly transmitted parasites move through host populations and influence individual parasite loads

    Dark, rare and inspirational microbial matter in the extremobiosphere: 16 000 m of bioprospecting campaigns

    Get PDF
    The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivaled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of ‘the uncultured microbial majority’ has now revealed enormous taxonomic diversity among ‘dark’ and ‘rare’ actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify ‘gifted’ organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation

    Predators reduce extinction risk in noisy metapopulations

    Get PDF
    Background Spatial structure across fragmented landscapes can enhance regional population persistence by promoting local “rescue effects.” In small, vulnerable populations, where chance or random events between individuals may have disproportionately large effects on species interactions, such local processes are particularly important. However, existing theory often only describes the dynamics of metapopulations at regional scales, neglecting the role of multispecies population dynamics within habitat patches. Findings By coupling analysis across spatial scales we quantified the interaction between local scale population regulation, regional dispersal and noise processes in the dynamics of experimental host-parasitoid metapopulations. We find that increasing community complexity increases negative correlation between local population dynamics. A potential mechanism underpinning this finding was explored using a simple population dynamic model. Conclusions Our results suggest a paradox: parasitism, whilst clearly damaging to hosts at the individual level, reduces extinction risk at the population level

    Introducing the Atacama Desert

    Get PDF
    This brief introduction is intended to orientate the reader with respect to the principal environmental and historical features of the Atacama Desert, the oldest and continuously driest non-polar temperate desert on Earth. Exploration of its microbiology is relatively recent but both fundamental and applied research activities have grown dramatically in recent years reflecting the substantial interest in its microbial diversity, ecology, biogeochemistry, natural product potential and Mars-analogue properties of this unique and invigorating environment

    Nocardiopsis deserti sp. nov., isolated from a high altitude Atacama Desert soil

    Get PDF
    The taxonomic status of a Nocardiopsis strain, designated H13T, isolated from a high altitude Atacama Desert soil, was established by using a polyphasic approach. The strain was found to have chemotaxonomic, cultural and morphological characteristics consistent with its classification within the genus Nocardiopsis and formed a well-supported clade in the Nocardiopsis phylogenomic tree together with the type strains of Nocardiopsis alborubida, Nocardiopsis dassonvillei and Nocardiopsis synnematoformans. Strain H13T was distinguished from its closest relatives by low average nucleotide identity (93.2–94.9 %) and in silico DNA–DNA hybridization (52.5–62.4 %) values calculated from draft genome assemblies and by a range of phenotypic properties. On the basis of these results, it is proposed that the isolate be assigned to the genus Nocardiopsis as Nocardiopsis deserti sp. nov. with isolate H13T (=CGMCC 4.7585T=KCTC 49249T) as the type strai

    Photodetachment and photoreactions of substituted naphthalene anions in a tandem ion mobility spectrometer

    Get PDF
    Substituted naphthalene anions (deprotonated 2-naphthol and 6-hydroxy-2-naphthoic acid) are spectroscopically probed in a tandem drift tube ion mobility spectrometer (IMS). Target anions are selected according to their drift speed through nitrogen buffer gas in the first IMS stage before being exposed to a pulse of tunable light that induces either photodissociation or electron photodetachment, which is conveniently monitored by scavenging the detached electrons with trace SF6 in the buffer gas. The photodetachment action spectrum of the 2-naphtholate anion exhibits a band system spanning 380-460 nm with a prominent series of peaks spaced by 440 cm-1, commencing at 458.5 nm, and a set of weaker peaks near the electron detachment threshold corresponding to transitions to dipole-bound states. The two deprotomers of 6-hydroxy-2-naphthoic acid are separated and spectroscopically probed independently. The molecular anion formed from deprotonation of the hydroxy group gives rise to a photodetachment action spectrum similar to that of the 2-naphtholate anion with an onset at 470 nm and a maximum at 420 nm. Near the threshold, the photoreaction with SF6 is observed with displacement of an OH group by an F atom. In contrast, the anion formed from deprotonation of the carboxylic acid group gives rise to a photodissociation action spectrum, recorded on the CO2 loss channel, lying at much shorter wavelengths with an onset at 360 nm and maximum photoresponse at 325 nm

    High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria

    Get PDF
    The data reported in this paper are among the first relating to the microbiology of hyper-arid, very high altitude deserts and they provide base line information on the structure of actinobacterial communities. The high mountain Cerro Chajnantor landscape of the Central Andes in northern Chile is exposed to the world’s most intense levels of solar radiation and its impoverished soils are severely desiccated. The purpose of this research was to define the actinobacterial community structures in soils at altitudes ranging from 3000 to 5000 m above sea level. Pyrosequencing surveys have revealed an extraordinary degree of microbial dark matter at these elevations that includes novel candidate actinobacterial classes, orders and families. Ultraviolet-B irradiance and a range of edaphic factors were found to be highly significant in determining community compositions at family and genus levels of diversity

    The influence of refuge sharing on social behaviour in the lizard Tiliqua rugosa

    Get PDF
    Refuge sharing by otherwise solitary individuals during periods of inactivity is an integral part of social behaviour and has been suggested to be the precursor to more complex social behaviour. We compared social association patterns of active versus inactive sheltering individuals in the social Australian sleepy lizard, Tiliqua rugosa, to empirically test the hypothesis that refuge sharing facilitates social associations while individuals are active. We fitted 18 neighbouring lizards with Global Positioning System (GPS) recorders to continuously monitor social associations among all individuals, based on location records taken every 10 min for 3 months. Based on these spatial data, we constructed three weighted, undirected social networks. Two networks were based on empirical association data (one for active and one for inactive lizards in their refuges), and a third null model network was based on hypothetical random refuge sharing. We found patterns opposite to the predictions of our hypothesis. Most importantly, association strength was higher in active than in inactive sheltering lizards. That is, individual lizards were more likely to associate with other lizards while active than while inactive and in shelters. Thus, refuge sharing did not lead to increased frequencies of social associations while lizards were active, and we did not find any evidence that refuge sharing was a precursor to sleepy lizard social behaviour. Our study of an unusually social reptile provides both quantitative data on the relationship between refuge sharing and social associations during periods of activity and further insights into the evolution of social behaviour in vertebrates

    New genus-specific primers for PCR identification of Rubrobacter strains

    Get PDF
    A set of oligonucleotide primers, Rubro223f and Rubro454r, were found to amplify a 267 nucleotide sequence of 16S rRNA genes of Rubrobacter type strains. The primers distinguished members of this genus from other deeply-rooted actinobacterial lineages corresponding to the genera Conexibacter, Gaiella, Parviterribacter, Patulibacter, Solirubrobacter and Thermoleophilum of the class Thermoleophilia. Amplification of DNA bands of about 267 nucleotides were generated from environmental DNA extracted from soil samples taken from two locations in the Atacama Desert. Sequencing of a DNA library prepared from the bands showed that all of the clones fell within the evolutionary radiation occupied by the genus Rubrobacter. Most of the clones were assigned to two lineages that were well separated from phyletic lines composed of Rubrobacter type strains. It can be concluded that primers Rubro223f and Rubro454r are specific for the genus Rubrobacter and can be used to detect the presence and abundance of members of this genus in the Atacama Desert and other biomes
    corecore