64 research outputs found

    Measurement of Plasmodium falciparum transmission intensity using serological cohort data from Indonesian schoolchildren.

    Get PDF
    BACKGROUND: As malaria transmission intensity approaches zero, measuring it becomes progressively more difficult and inefficient because parasite-positive individuals are hard to detect. This situation may arise shortly before achieving local elimination, or during surveillance post-elimination to prevent reintroduction. Antibody responses against the parasite last longer than the infections themselves. This "footprint" of infection may thus be used for assessing transmission intensity. A statistical approach is presented for measuring the seroconversion rate (SCR), a correlate of the force of infection, from individual-level longitudinal data on antibody titres in an area of low Plasmodium falciparum transmission. METHODS: Blood samples were collected from 160 Indonesian schoolchildren every month for six months. Titres of antibodies against AMA-1 and MSP-1(19) antigens of P. falciparum were measured using ELISA. The distribution of antibody titres among seronegative and -positive individuals, respectively, was estimated by comparing the titres from the study data (a mixture of both seropositive and -negative individuals) with titres from a (unexposed) negative control group of Indonesian individuals. Two Markov-Chain models for the transition of individuals between serological states were fitted to individual anti-PfAMA-1 or anti-PfMSP-1 titre time series using Bayesian Markov-Chain-Monte-Carlo (MCMC). This yielded estimates of SCR as well as of the duration of seropositivity. RESULTS: A posterior median SCR of 0.02 (Pf AMA-1) and 0.09 (PfMSP-1) person(-1) year(-1) was estimated, with credible intervals ranging from 1E-4 to 0.2 person(-1) year(-1). This level of transmission intensity is at the lower range of what can reliably be measured with the present study size. A Bayesian test for seroconversion of an individual between two observations is presented and used to identify the subjects who have most likely experienced an infection. Furthermore, the theoretical limits of measuring transmission intensity, and how these depend on duration and size of a study as well as on transmission intensity itself, is illustrated. CONCLUSIONS: This analysis shows that it is possible to measure SCR's from individual-level longitudinal data on antibody titres. In addition, individual seroconversion events can be identified, which can be useful in assessing interruption of transmission. Analyses of further serological datasets using the present method are required to improve and validate it. This includes measurement of the duration of antibody responses, how it depends on host age or cumulative exposure, or on the particular antigen used

    Seasonal changes in the antibody responses against Plasmodium falciparum merozoite surface antigens in areas of differing malaria endemicity in Indonesia.

    Get PDF
    BACKGROUND: The transmission of malaria in Indonesia is highly heterogeneous spatially and seasonally. Anti-malaria antibody responses can help characterize this variation. In the present study antibody responses to Plasmodium falciparum MSP-1 and AMA-1 were measured to assess the transmission intensity in a hypo-endemic area of Purworejo and a meso-endemic area of Lampung during low and high transmission seasons. METHODS: Filter-paper blood spot samples collected from Purworejo and Lampung by cross-sectional survey during high and low transmission season were stored at -20°C. Indirect ELISA assays were carried out using PfMSP1-19 and PfAMA1 antigens. A positivity threshold was determined by samples from local unexposed individuals, and the differences in seroprevalence, antibody level and correlation between antibody level and age in each site were statistically analysed. RESULTS: Prevalence of antibodies to either PfMSP1-19 or PfAMA1 was higher in Lampung than in Purworejo in both the low (51.3 vs 25.0%) and high transmission season (53.9 vs 37.5%). The magnitude of antibody responses was associated with increasing age in both sites and was higher in Lampung. Age-adjusted seroconversion rates showed an approximately ten-fold difference between Lampung and Purowejo. Two different seroconversion rates were estimated for Lampung suggesting behaviour-related differences in exposure. In both settings antibody responses to PfMSP1-19 were significantly lower in the low season compared to the high season. CONCLUSION: Seasonal changes may be detectable by changes in antibody responses. This is particularly apparent in lower transmission settings and with less immunogenic antigens (in this case PfMSP1-19). Examination of antibody levels rather than seroprevalence is likely to be a more sensitive indicator of changes in transmission. These data suggest that sero-epidemiological analysis may have a role in assessing short-term changes in exposure especially in low or seasonal transmission settings

    Will More of the Same Achieve Malaria Elimination? Results from an Integrated Macroeconomic Epidemiological Demographic Model.

    Get PDF
    Historic levels of funding have reduced the global burden of malaria in recent years. Questions remain, however, as to whether scaling up interventions, in parallel with economic growth, has made malaria elimination more likely today than previously. The consequences of "trying but failing" to eliminate malaria are also uncertain. Reduced malaria exposure decreases the acquisition of semi-immunity during childhood, a necessary phase of the immunological transition that occurs on the pathway to malaria elimination. During this transitional period, the risk of malaria resurgence increases as proportionately more individuals across all age-groups are less able to manage infections by immune response alone. We developed a robust model that integrates the effects of malaria transmission, demography, and macroeconomics in the context of Plasmodium falciparum malaria within a hyperendemic environment. We analyzed the potential for existing interventions, alongside economic development, to achieve malaria elimination. Simulation results indicate that a 2% increase in future economic growth will increase the US5.1billioncumulativeeconomicburdenofmalariainGhanatoUS5.1 billion cumulative economic burden of malaria in Ghana to US7.2 billion, although increasing regional insecticide-treated net coverage rates by 25% will lower malaria reproduction numbers by just 9%, reduce population-wide morbidity by -0.1%, and reduce prevalence from 54% to 46% by 2034. As scaling up current malaria control tools, combined with economic growth, will be insufficient to interrupt malaria transmission in Ghana, high levels of malaria control should be maintained and investment in research and development should be increased to maintain the gains of the past decade and to minimize the risk of resurgence, as transmission drops

    Detectability of Plasmodium falciparum clones

    Get PDF
    BACKGROUND: In areas of high transmission people often harbour multiple clones of Plasmodium falciparum, but even PCR-based diagnostic methods can only detect a fraction (the detectability, q) of all clones present in a host. Accurate measurements of detectability are desirable since it affects estimates of multiplicity of infection, prevalence, and frequency of breakthrough infections in clinical drug trials. Detectability can be estimated by typing repeated samples from the same host but it has been unclear what should be the time interval between the samples and how the data should be analysed. METHODS: A longitudinal molecular study was conducted in the Kassena-Nankana district in northern Ghana. From each of the 80 participants, four finger prick samples were collected over a period of 8 days, and tested for presence of different Merozoite Surface Protein (msp) 2 genotypes. Implications for estimating q were derived from these data by comparing the fit of statistical models of serial dependence and over-dispersion. RESULTS: The distribution of the frequencies of detection for msp2 genotypes was close to binomial if the time span between consecutive blood samples was at least 7 days. For shorter intervals the probabilities of detection were positively correlated, i.e. the shorter the interval between two blood collections, the more likely the diagnostic results matched for a particular genotype. Estimates of q were rather insensitive to the statistical model fitted. CONCLUSIONS: A simple algorithm based on analysing blood samples collected 7 days apart is justified for generating robust estimates of detectability. The finding of positive correlation of detection probabilities for short time intervals argues against imperfect detection being directly linked to the 48-hour periodicity of P. falciparum. The results suggest that the detectability of a given parasite clone changes over time, at an unknown rate, but fast enough to regard blood samples taken one week apart as statistically independent

    How Much Remains Undetected? Probability of Molecular Detection of Human Plasmodia in the Field

    Get PDF
    BACKGROUND: In malaria endemic areas, most people are simultaneously infected with different parasite clones. Detection of individual clones is hampered when their densities fluctuate around the detection limit and, in case of P. falciparum, by sequestration during part of their life cycle. This has important implications for measures of levels of infection or for the outcome of clinical trials. This study aimed at measuring the detectability of individual P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and at investigating the impact of sampling strategies on basic epidemiological measures such as multiplicity of infection (MOI). METHODS: Samples were obtained in a repeated cross-sectional field survey in 1 to 4.5 years old children from Papua New Guinea, who were followed up in 2-monthly intervals over 16 months. At each follow-up visit, two consecutive blood samples were collected from each child at intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P. falciparum and msp1F3 and MS16 for P. vivax. Observed prevalence and mean MOI estimated from single samples per host were compared to combined data from sampling twice within 24 h. FINDINGS AND CONCLUSION: Estimated detectability was high in our data set (0.79 [95% CI 0.76-0.82] for P. falciparum and, depending on the marker, 0.61 [0.58-0.63] or 0.73 [0.71-0.75] for P. vivax). When genotyping data from sequential samples, collected 24 hours apart, were combined, the increase in measured prevalence was moderate, 6 to 9% of all infections were missed on a single day. The effect on observed MOI was more pronounced, 18 to 31% of all individual clones were not detected in a single bleed. Repeated sampling revealed little difference between detectability of P. falciparum and P. vivax

    The bZIP Transcription Factor Rca1p Is a Central Regulator of a Novel CO2 Sensing Pathway in Yeast

    Get PDF
    Like many organisms the fungal pathogen Candida albicans senses changes in the environmental CO2 concentration. This response involves two major proteins: adenylyl cyclase and carbonic anhydrase (CA). Here, we demonstrate that CA expression is tightly controlled by the availability of CO2 and identify the bZIP transcription factor Rca1p as the first CO2 regulator of CA expression in yeast. We show that Rca1p upregulates CA expression during contact with mammalian phagocytes and demonstrate that serine 124 is critical for Rca1p signaling, which occurs independently of adenylyl cyclase. ChIP-chip analysis and the identification of Rca1p orthologs in the model yeast Saccharomyces cerevisiae (Cst6p) point to the broad significance of this novel pathway in fungi. By using advanced microscopy we visualize for the first time the impact of CO2 build-up on gene expression in entire fungal populations with an exceptional level of detail. Our results present the bZIP protein Rca1p as the first fungal regulator of carbonic anhydrase, and reveal the existence of an adenylyl cyclase independent CO2 sensing pathway in yeast. Rca1p appears to regulate cellular metabolism in response to CO2 availability in environments as diverse as the phagosome, yeast communities or liquid culture

    Asymptomatic Plasmodium falciparum infections may not be shortened by acquired immunity

    Get PDF
    The duration of untreated Plasmodium falciparum infections is a defining characteristic of the parasite's biology. It is not clear whether naturally acquired immunity (NAI) can shorten infections, despite the potential implications for malaria control and elimination as well as for basic research.; Data on the presence of P. falciparum msp2 genotypes in six blood samples collected over one year was analysed, together with four samples collected over 1 week, from a cohort in Navrongo (Ghana). Mathematical models assuming either exponential, Weibull, gamma, or log-normal infection durations were estimated separately for six age-groups. The method allowed for varying clonal acquisition and detection rates.; The best fitting (Weibull) mean durations were 124 days (children >5 years old), 179 days (5-9 years), and 70-90 days (<10 years). This non-monotonic age pattern is not suggestive of an infection-clearing effect of NAI since immunity increases with exposure, and thus, age. Age-related differences in innate immunity are a more plausible explanation. 21% of blood-stage infections terminated within 1 week, in stark contrast to months of persistence in infections induced in neuro-syphilis patients (malariatherapy data). Age independence in this percentage raises the possibility that this clearance may result from innate mechanisms or genetic incompatibility between hosts and parasites, rather than from NAI.; In all ages of hosts a substantial proportion of infections are cleared in the first days or weeks of appearance in the blood, while others persist for many months. Although cumulative exposure and NAI increase with age, this does apparently not translate into an increased rate of termination of infections

    Estimating Plasmodium falciparum transmission rates in low-endemic settings using a combination of community prevalence and health facility data.

    Get PDF
    As some malaria control programs shift focus from disease control to transmission reduction, there is a need for transmission data to monitor progress. At lower levels of transmission, it becomes increasingly more difficult to measure precisely, for example through entomological studies. Many programs conduct regular cross sectional parasite prevalence surveys, and have access to malaria treatment data routinely collected by ministries of health, often in health management information systems. However, by themselves, these data are poor measures of transmission. In this paper, we propose an approach for combining annual parasite incidence and treatment data with cross-sectional parasite prevalence and treatment seeking survey data to estimate the incidence of new infections in the human population, also known as the force of infection. The approach is based on extension of a reversible catalytic model. The accuracy of the estimates from this model appears to be highly dependent on levels of detectability and treatment in the community, indicating the importance of information on private sector treatment seeking and access to effective and appropriate treatment
    corecore