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Abstract

As some malaria control programs shift focus from disease control to transmission reduction, there is a need for
transmission data to monitor progress. At lower levels of transmission, it becomes increasingly more difficult to measure
precisely, for example through entomological studies. Many programs conduct regular cross sectional parasite prevalence
surveys, and have access to malaria treatment data routinely collected by ministries of health, often in health management
information systems. However, by themselves, these data are poor measures of transmission. In this paper, we propose an
approach for combining annual parasite incidence and treatment data with cross-sectional parasite prevalence and
treatment seeking survey data to estimate the incidence of new infections in the human population, also known as the
force of infection. The approach is based on extension of a reversible catalytic model. The accuracy of the estimates from
this model appears to be highly dependent on levels of detectability and treatment in the community, indicating the
importance of information on private sector treatment seeking and access to effective and appropriate treatment.
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Introduction

Much of the malarious world has seen substantial scale up in

intervention coverage in the last decade as a result of better

funding for national malaria control programs [1]. Some programs

are trying to reduce transmission with the long-term goal of

interrupting it [2], but there is no generally applicable approach

for measuring changes in transmission at low levels [3]. The

entomological inoculation rate (EIR), estimated as a product of the

sporozoite-positive host-seeking mosquitoes and the human-biting

rate, is a definitive measure of transmission, but its measurement is

technically challenging, labor intensive, provides only very

imprecise estimates with low external validity, and is not feasible

where EIR is low [4].

The incidence of new infections in the human population, also

known as the force of infection (FOI), is a measure of transmission

that is generally estimated without recourse to entomological

measurements. The method of clearing parasites with an effective

therapy and then following-up to observe when re-infection occurs

is well established as an approach for measuring FOI in

observational studies [5,6] and intervention trials [7–9]. An

alternative way of estimating FOI is by molecular typing of

sequential samples of blood from exposed individuals [10]. Both of

these methods require multiple field visits to a study cohort, and

thus neither is cost-effective nor feasible as a routine monitoring

approach. In low transmission settings, FOI can be estimated

using serological approaches, making use of simple differential

equation models to translate age-profiles of sero-positivity into a

history of exposure [11]. These approaches are being used to

compare transmission intensity across different settings [12,13],

but are of limited value in tracking rapid changes in transmission.

Longitudinal patterns of clinical incidence clearly provide most

of the accessible information with which to track such changes,

largely because of the relative abundance of annual parasite index

(API) data through routine health information systems. In fact, in

many parts of the world with low levels of transmission, especially

outside Africa, the only malariometric data routinely collected are

health facility-based clinical incidence (API) data. These data

provide no information about sub-clinical infections, home treated

infections, or infections among those not seeking treatment within

the health system and can not be used directly to estimate

transmission intensity.

In many settings, levels of malaria endemicity are assessed using

parasite prevalence derived from population-based household

surveys. In most infectious diseases, transmission can be measured

by the incidence of infection, which can be estimated as prevalence

divided by the average duration of infection. For malaria,
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however, the same prevalence value can result from a wide range

of EIR values [3], depending on biting densities of mosquitoes,

variations in how long infections persist, and the frequency of

treatment within the community. Box S1 describes common

metrics used to measure malaria transmission. Further, duration of

malaria infections is hard to measure, and depends strongly on

treatment rates. As transmission is reduced, the sample size needed

to accurately estimate parasite prevalence (or changes in

prevalence) using household surveys increases, making it a poor

way to measure endemicity or transmission [14].

In this paper we propose an approach using a combination of

API and prevalence survey data to estimate FOI. The approach is

based on extending a reversible catalytic model [15] previously

used for modeling the infection and recovery process for

Plasmodium falciparum malaria [16,17]. The extension allows for 1)

the effect of treatment on duration of infection and 2) the

incorporation of imperfect detection of infections in sampled

individuals, or detectability [18]. The effect of treatment, through

impact on the duration of infection, alters the relationship between

incidence and prevalence. Detectability is most likely to be

imperfect among individuals with asymptomatic infections

[18,19]. The extensions proposed here incorporate this bias in

prevalence estimates, while remaining accessible and computable

without the need for sophisticated software.

Model

We use a reversible catalytic model of the relationship between

prevalence and the force of infection, developed by Muench [15]

and later adapted to malaria by Bekessy [16], which assumes that

infections are distributed randomly over the population. The

general form of the model is

dP

dt
~l 1{Pð Þ{mP, ð1Þ

where P is (blood stage) parasite prevalence, l is FOI or incidence

of new infections per person per time unit, and m is the clearance

rate of an infection per person per time unit (equal to the

reciprocal of the average duration of an infection). Solving the

above equation for l at equilibrium (where dP=dt~0) yields

l~
mP

1{Pð Þ : ð2Þ

This approach assumes that the equilibrium parasite prevalence in

the population is a result of infection clearance and acquisition,

and assumes prefect detectability of infection. Under the

assumptions that having a pre-existing asymptomatic infection

does not change the probability of acquiring a symptomatic

infection, that only newly acquired infections can cause clinical

cases, and that a proportion a of these gets randomly, promptly,

appropriately and effectively treated, without contributing to the

parasite prevalence, the rate at which parasite negative individuals

become positive is l~ 1{að Þl0, with l0 the FOI in the absence of

treatment, corresponding to the rate at which infections are

introduced. Data of 311 malaria therapy patients show that the

first day of fever is 3 days (median) after the onset of detectable

parasitaemia, with 98.7% less than 10 days, out of an average

infection duration of about 200 days.

The average clearance rate m can be written m~m0zrx, with m0

the natural clearance rate and rx~al0 the (measurable) number of

(new) infections receiving treatment per person per time unit, i.e.

the treatment rate. Asymptomatic infections are thus naturally

cleared with rate m0, or when a new symptomatic super infection

occurs which gets treated (clearing also the asymptomatic

infection). This leads to:

dP

dt
~ 1{að Þl0 1{Pð Þ{ m0zal0ð ÞP~l0 1{Pð Þ{m0P{al0: ð3Þ

Again assuming equilibrium, this leads to an estimate of the FOI of

l0~
m0Pzrx

1{P
~

m0P

1{P{a
~

m0

1{a

P
{1

, ð4Þ

with information on treatment included, and m0 estimated from

the duration of untreated infections.

When detectability q, the probability of detecting an existing

infection (in a cross-sectional survey), is incorporated into the

model, an additional term Q, for the measured prevalence, is

required. True prevalence, P, is related to measured prevalence, Q,

by the relationship P~Q=q.

With P substituted, the model incorporating both treatment and

detectability in the equilibrium state is

l0~

m0

Q

q
zrx

1{
Q

q

~
m0Qzrxq

q{Q
~

m0Q

q 1{að Þ{Q
~

m0
q

Q
1{að Þ{1

: ð5Þ

This model considers all parasites in an infected host as equivalent,

and all hosts as identical. Additionally, as this is an equilibrium

model, it does not account for seasonality or trends, but it can be

repeatedly estimated over time. Model parameters are summa-

rized in Box S2.

In the limit when prevalence is zero (Q~0) then the estimated

force of infection is equal to the rate of treatment l0~rx. Figure 1

illustrates the relationship between FOI (l0) and treatment rate at

5% and 25% measured prevalence and an average natural

parasitaemia duration of 200 days with perfect detectability and

50% detectability [18]. The difference in FOI at the two

detectability levels is small at 5% measured prevalence, and larger

at 25% measured prevalence. When detectability is at 50%, the

FOI estimate is higher due to infections which are missed in cross

sectional prevalence surveys. A higher treatment rate corresponds

to higher incidence for the same observed prevalence, in-line with

expectations.

Figure 2 shows the relationship between the measured

prevalence against FOI under two different assumptions about

treatment; 20% or 40% of new infections receiving curative

treatment. The curves have an asymptote at the measured

prevalence Q~q 1{að Þ. For example, at 50% detectability of

parasitaemia in cross sectional surveys and 20% of new infections

treated, the model has an asymptote at a measured prevalence of

40%, while with 40% of new infections treated, measured

prevalence is 30%. As expected, with 100% detectability, the

observed prevalence values are exactly double that of the values at

50% detectability. Near the asymptote, the ability to estimate the

FOI from the measured prevalence Q is limited.

Figure 3 shows the relationship between the FOI (l0) against the

probability of detecting an existing parasitaemic infection (in a

cross sectional survey) at two different measured prevalences; 5%

or 25%. The curves have asymptotes at q~Q= 1{að Þ near to

which the estimate of the FOI is very sensitive to the detectability.

Estimating Pf Transmission in Low-Endemic Settings
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Model with Field Data

Data on treatment were derived from malaria epidemic

detection surveillance sentinel sites in Ethiopia [20–22]. All

sentinel sites have shown high (nearly perfect) testing rates among

suspect cases and good adherence of providers to test results.

Microscopy performance was variable across all sites, but in the

two selected sites, concordance with expert readings was high

(.90%). Over 1.5 years of observation at two sites, treatment rates

were estimated based on API data from the sentinel health centers

and treatment seeking behavior estimates from a malaria indicator

survey [20–22] (adjustments were made to increase the number of

treatments based on the fraction of patients who sought and

received anti-malarials in the private sector vs those who sought

care and received anti-malarials in the public sector). Estimates of

parasite prevalence from the malaria atlas project [21] were used

to estimate local parasite prevalence. Mean P. falciparum parasite

rates children from age 2 to age 10 (PfPR2–10) within a 10 km (2-

cell) radius of the health center were used as an estimate of local

malaria parasite prevalence. Tables 1 and 2 show the input values

for each site.

Yearly equilibrium FOI by month and averages across the

period for each Ethiopian sentinel site are shown in Figure 4.

This figure illustrates the sensitivity of measurement of FOI to

treatment rates and model specification in relation to detectability,

as the monthly estimates show that data from the dry period give

low estimates of annual FOI with perfect detectability and FOI

below 0.05 per person month assuming 50% detectability of

infections. Spikes in FOI were seen during transmission periods at

both sites, especially Bulbulla. Estimation of FOI with only data

from high transmission periods would lead to erroneously high

estimates of overall FOI for the entire period.

Discussion

Force of infection for P. falciparum malaria can be estimated by

combining API data and prevalence values from simple cross

sectional surveys, with an extension of Muench’s reversible

catalytic model. This provides a straightforward low-cost measure

Figure 1. Force of infection against treatment rate. Force of
infection (l0 : new infections per person year) against treatment rate
(new infections treated per person year) at 5% measured prevalence
(black lines) and 25% measured prevalence (blue lines), with perfect
detectability (solid lines) and 50% detectability (dotted lines), with an
average natural parasitaemia duration of 200 days.
doi:10.1371/journal.pone.0042861.g001

Figure 2. Measured prevalence against force of infection.
Measured prevalence against force of infection (l0 : new infections prior
to any treatment per person year) at 20% (red lines) and 40% (green
lines) treatment rate of new infections; perfect detectability (solid lines)
and 50% detectability (dotted lines), with an average natural
parasitaemia duration of 200 days.
doi:10.1371/journal.pone.0042861.g002

Figure 3. Force of infection against detectability of parasitae-
mia. Force of infection (l0 : new infections prior to any treatment per
person year) against the probability of detecting an existing
parasitaemic infection (in a cross sectional survey) at 5% measured
prevalence (solid lines) and 25% measured prevalence (dashed lines),
with a treatment probability of new infections of 20% (red lines) and
40% (green lines), with an average natural parasitaemia duration of 200
days.
doi:10.1371/journal.pone.0042861.g003

Estimating Pf Transmission in Low-Endemic Settings
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of malaria transmission applicable in low transmission areas.

Catalytic models, which are much simpler than many other

malaria transmission models, have long been used for estimating

transmission rates from seroprevalence data [11,23,24]. They have

also previously been used to estimate EIR and FOI from

prevalence data obtained by microscopy [25]. However, these

studies either ignored treatment or did not distinguish effects of

treatment from those of natural infection clearance and imperfect

detectability. Treatment seeking, especially when efficacious anti-

malarials are available, dramatically affects any estimation of

transmission rates from infection data because effective treatment

substantially reduces the duration of infection [26,27]. Increas-

ingly, treatment is based on parasitological diagnosis using rapid

diagnostic tests (RDTs) and the number of treatments in health

facilities is being recorded in health management information

systems (HMISs). The use of RDTs has increased the value of

HMIS data, and in low transmission areas, API values derived

from HMISs are often used as measures of malaria transmission.

However, HMISs remain an unreliable and incomplete source

of treatment data [28] because they do not capture private sector

or home treatment for malaria, and need to be augmented by

population-based information on patients who seek treatment

outside the formal public sector. If HMIS data are to be used to

estimate transmission rates they also need to be augmented by

population-based parasite prevalence data, which provide infor-

mation on infections that have escaped treatment. Fortunately,

recalls of treatment-seeking behavior and parasite prevalence data

are both routinely collected in nationally representative malaria

indicator surveys (MISs) repeated every two to three years in many

endemic countries. The combination of MIS and HMIS data,

using the algorithm described in this paper, thus provides a widely

applicable means of estimating the FOI. One limitation of this

approach is that data on treatment seeking derived from nationally

representative surveys may fail to capture local variation.

Furthermore, such data, which are usually available only semi-

annually, will also fail to capture seasonal dynamics in treatment

seeking. In many areas, systems for collection of HMIS data are

weak and imprecise, and so would require strengthening before

they can be considered a reliable source of treatment data.

This approach involves several approximations. It relies on

equilibrium solutions, though in reality the system will generally

not be at equilibrium. The simple model described in the main

text also ignores the effects of super-infection, and does not

explicitly incorporate multiplicities of infection greater than one.

At high transmission levels, most hosts harbor many co-infecting

clones, but allowing for super-infection leads to substantially more

complicated models and requires an iterative approach for

estimating the FOI from prevalence and API data (see File S1).

Even these models with super-infection ignore further complica-

tions resulting from variations between hosts in levels of

detectability, acquired immunity, levels of exposure and in access

to treatment, all of which arise because of dependence between

infections and which are therefore important at higher levels of

transmission. At high incidences the same prevalence can thus

result from a wide range of EIR values [29], depending on these

sources of heterogeneity [30]. Where prevalence is above about

20%, a more detailed model capturing these effects would seem

appropriate. Further work should include analyses of sensitivity to

the assumptions about diagnostic performance, and more critical

evaluation of the limits over which the approach is applicable.

At lower prevalence, allowing for super-infection makes little

difference to the relationship of prevalence and FOI (see File S1

and Figures S1 and S2) and it appears as if it is reasonable to treat

distinct infection events as independent and to account for

treatment. However, the need to incorporate imperfect detection

of parasites depending on the number of co-infections complicates

the application of this model. Indeed, hosts with sub-patent

infections are a greater proportion of the infected hosts at lower

prevalence levels because a lower multiplicity of infection

translates into a lower probability that there is at least one clone

with a density above the detection level [18,19].

Seasonality and age effects also need to be considered. Malaria

transmission generally varies greatly by season, as illustrated by

our Ethiopian example, so information collected at only one time

of the year is likely to be unrepresentative, leading to biased

estimates of FOI. Case-incidence is the main driver of seasonality

in the estimates of FOI, so it is probably good enough to use

annual averages for the prevalence and treatment-seeking

behavior, but it is worrying that these data are usually collected

only at one time-point which may be unrepresentative. Addition-

ally, given the absence of diagnostics and widespread use of

ineffective anti-malarials in much of the private sector, fluctuations

in effective and appropriate treatment levels in the private sector

Table 1. Monthly malaria treatments at Bulbulla and
Asendabo health centers.

Year Month Bulbulla HC Asendabo HC

2010 Apr 139 316

May 297 288

Jun 979 398

Jul 331 222

Aug 201 195

Sep 95 166

Oct 132 333

Nov 89 135

Dec 46 102

2011 Jan 35 57

Feb 30 19

Mar 27 11

Apr 9 43

May 28 78

Jun 62 106

Jul 94 261

Aug 835 534

Sep 243 293

doi:10.1371/journal.pone.0042861.t001

Table 2. Other parameter values.

Model parameter Input Value

Daily natural clearance rate 1/200

Detectability 50%

Observed prevalence in Bulbulla 7.2%

Proportion of antimalarial drugs obtained in private sector 65.7%

Catchment population Bulbulla 54,157

Observed prevalence Asendabo 10.4%

Catchment population Asendabo 48,111

doi:10.1371/journal.pone.0042861.t002

Estimating Pf Transmission in Low-Endemic Settings
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do not necessarily track the patterns in the public sector [31].

Moreover, MISs mainly collect data from children less than five

years of age, and both prevalence and treatment seeking behavior

can vary by age and on small spatial scales. In our data example,

we used data for two to ten year olds, a limitation of the approach,

as compared to all ages prevalence data. All this adds to the case

for MISs to be conducted in a rolling manner throughout the year

[32], to be extended to include older people, and our model to be

validated in a range of settings, including those where other

estimates of FOI are available.

Despite all these reservations, estimating the FOI from a

combination of case series and cross-sectional survey data remains

a much more practicable means of tracking malaria transmission

in programs than entomological assessment of the inoculation rate.

The FOI and the EIR are closely related but not identical, because

the FOI excludes bites by infectious mosquitoes that do not end up

being infectious to humans [5,33,34], making FOI a more

appropriate measure of transmission, while EIR is technically a

measure of exposure. FOI is only indirectly related to burden of

disease, which also depends on levels of clinical immunity, on

promptness of treatment, and on the quality of care for severe

disease. Measurement of disease burden is explored in a

companion paper [35]. As malaria control programs, even in

sub-Saharan Africa, increasingly re-orient themselves from reduc-

ing disease towards reducing transmission, there is a need for them

to clearly distinguish between measures of disease burden and

transmission, and estimating FOI may be the best avenue to

accurately understand the level of transmission achieved. This

requires comprehensive information on patient treatment rates

from all care-providers as well as prevalence data, with allowance

for imperfect detection of parasites.

Figure 4. Monthly and average force of infection estimates for Bulbulla and Asendabo health center catchment areas in Ethiopia.
Monthly (dashed lines) and annual average force of infection (l0 : new infections prior to any treatment per person month) estimates assuming
perfect detectability (black lines) or 50% detectability (red lines) in A Bulbulla and B Asendabo health center catchment areas.
doi:10.1371/journal.pone.0042861.g004
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Conclusions

A reversible catalytic model that incorporates treatment and

detectability can be used to estimate P. falciparum malaria FOI

from HMIS and prevalence data from community surveys. The

approach also requires an estimate of the proportion of effective

treatments included in the HMIS out of all treatments and uses

estimates from research studies of levels of detectability of parasites

and of duration of untreated infections. This approach is much

more straightforward than measuring the entomological inocula-

tion rate. It is mainly applicable in low transmission settings, where

there is a critical need for estimation of transmission rates when

considering re-orientation of control programs towards elimina-

tion. Accurate results depend on availability of time series of

numbers of treatments of confirmed cases from both private and

public providers and an understanding of the levels of both patent

and undetectable infections prevalent in an area.
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Box S1 Standard metrics of malaria transmission.
Adapted from Smith DL, Smith TA and Hay I; Chapter 7.

Measuring Malaria for Elimination. in A Prospectus for malaria

elimination. The Malaria Elimination Group: The Global Health

Group UCSF Global Health Sciences (2009).

(DOCX)

Box S2 Model Parameters and Inputs.
(DOCX)

Figure S1 Compartment models for effects of treatment
on prevalence. Model A corresponds to the model in the main

text, which considers all parasites in an infected host as equivalent;

Model B is an infinite server queuing model, where the effect of

treatment is to remove only one infection at a time. The value of n

is the number of concurrent co-infections (multiplicity of infection):

only the first three infected categories are shown. Model C is a

variant of the infinite server model, in which treatment removes all

infections.

(TIF)

Figure S2 Comparison of prevalence values predicted
by different models. The black dots each correspond to the

means of 1000 simulations of the model illustrated in Figure S1C.

The red lines to prevalence predicted by model S1A; the blue lines

to that predicted by model S1B, and the black lines to the

approximation in equation A11. In all cases a clearance rate of

0.005 per day was assumed.

(TIF)

File S1 Models treating super-infections as indepen-
dent of each other.

(DOCX)
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