31 research outputs found
Compact electrically detected magnetic resonance setup
Electrically detected magnetic resonance (EDMR) is a commonly used technique
for the study of spin-dependent transport processes in semiconductor materials
and electro-optical devices. Here, we present the design and implementation of
a compact setup to measure EDMR, which is based on a commercially available
benchtop electron paramagnetic resonance (EPR) spectrometer. The electrical
detection part uses mostly off-the-shelf electrical components and is thus
highly customizable. We present a characterization and calibration procedure
for the instrument that allowed us to quantitatively reproduce results
obtained on a silicon-based reference sample with a βlarge-scaleβ state-of-
the-art instrument. This shows that EDMR can be used in novel contexts
relevant for semiconductor device fabrication like clean room environments and
even glove boxes. As an application example, we present data on a class of
environment-sensitive objects new to EDMR, semiconducting organic
microcrystals, and discuss similarities and differences to data obtained for
thin-film devices of the same molecule
Synergistic and Additive Effects of Epigallocatechin Gallate and Digitonin on Plasmodium Sporozoite Survival and Motility
BACKGROUND: Most medicinal plants contain a mixture of bioactive compounds, including chemicals that interact with intracellular targets and others that can act as adjuvants to facilitate absorption of polar agents across cellular membranes. However, little is known about synergistic effects between such potential drug candidates and adjuvants. To probe for such effects, we tested the green tea compound epigallocatechin gallate (EGCG) and the membrane permeabilising digitonin on Plasmodium sporozoite motility and viability. METHODOLOGY/PRINCIPAL FINDINGS: Green fluorescent P. berghei sporozoites were imaged using a recently developed visual screening methodology. Motility and viability parameters were automatically analyzed and IC50 values were calculated, and the synergism of drug and adjuvant was assessed by the fractional inhibitory concentration index. Validating our visual screening procedure, we showed that sporozoite motility and liver cell infection is inhibited by EGCG at nontoxic concentrations. Digitonin synergistically increases the cytotoxicity of EGCG on sporozoite survival, but shows an additive effect on sporozoite motility. CONCLUSIONS/SIGNIFICANCE: We proved the feasibility of performing highly reliable visual screens for compounds against Plasmodium sporozoites. We thereby could show an advantage of administering mixtures of plant metabolites on inhibition of cell motility and survival. Although the effective concentration of both drugs is too high for use in malaria prophylaxis, the demonstration of a synergistic effect between two plant compounds could lead to new avenues in drug discovery
P-590: Obesity regulates renal endothelin and endothelin ETA receptor expression in vivo. Differential effects of chronic ETA receptor blockade
ETA receptors have been implicated in obesity-associated hypertension (Hypertension 1999; 33: 1169). We characterized the renal endothelin system in diet-induced obesity and determined the effects of chronic treatment with the ETA antagonist darusentan. C57BL/6J mice were fed a standard diet (control) or a high-fat diet (Harlan TD88137) with or without darusentan (50 mg/kg/d, 30 wk). Total RNA was extracted from whole kidneys and mRNA expression of preproendothelin-1 (ppET-1), ETA receptors, and Ξ²-actin were determined by RT-PCR using mouse-specific primers. PCR-products were normalized vs. Ξ²-actin or 18S rRNA. Renal ET-1 protein was measured by RIA/HPLC. High fat diet increased body weight by 257% compared to 54% (control diet). Darusentan had no effect on body weight in obese mice (263%) and treatments had no effect on systolic blood pressure. Obesity was associated with upregulation of renal ETA receptors (144Β±5% vs 100Β±7%, p<0.05 vs. control) and to a lesser extent, preproendothelin-1 (113Β±5% vs.100Β±2%, p<0.05 vs. control). In obese mice chronic darusentan treatment in part prevented the ETA receptor upregulation (126% vs. 144Β±5%, p<0.05) but had no significant effect on ppET-1 mRNA expression (101Β±9 vs. 100Β±2%, n.s.). Renal ET-1 protein increased in obese animals (from 190Β±18 to 267Β±19 pg/g tissue, p<0.05 vs. control). This increase was not affected by concomitant darusentan treatment (n.s.). These data for the first time demonstrate that obesity in normotensive rats is associated with upregulation of renal ETA receptor expression suggesting that body weight per se affects ET receptor expression in the kidney. Our data further indicate that in this model ETA receptors control expression of the ETA receptor but not the ppET-1 gene, suggesting autocrine regulation in vivo. These mechanisms might contribute to the pathogenesis of obesity-associated diseases affecting the kidney and/or blood pressur
Setup of an In Vitro Test System for Basic Studies on Biofilm Behavior of Mixed-Species Cultures with Dental and Periodontal Pathogens
BACKGROUND: Caries and periodontitis are important human diseases associated with formation of multi-species biofilms. The involved bacteria are intensively studied to understand the molecular basis of the interactions in such biofilms. This study established a basic in vitro single and mixed-species culture model for oral bacteria combining three complimentary methods. The setup allows a rapid screening for effects in the mutual species interaction. Furthermore, it is easy to handle, inexpensive, and reproducible. METHODS: Streptococcus mitis, S. salivarius and S. sanguinis, typical inhabitants of the healthy oral cavity, S. mutans as main carriogenic species, and Porphyromonas gingivalis, Fusobacterium nucleatum, Parvimonas micra, S. intermedius and Aggregatibacter actinomycetemcomitans as periodontitis-associated bacteria, were investigated for their biofilm forming ability. Different liquid growth media were evaluated. Safranin-staining allowed monitoring of biofilm formation under the chosen conditions. Viable counts and microscopy permitted investigation of biofilm behavior in mixed-species and transwell setups. FINDINGS: S. mitis, F. nucleatum, P. gingivalis and P. micra failed to form biofilm structures. S. mutans, S. sanguinis, S. intermedius and S. salivarius established abundant biofilm masses in CDM/sucrose. A. actinomycetemcomitans formed patchy monolayers. For in depth analysis S. mitis, S. mutans and A. actinomycetemcomitans were chosen, because i) they are representatives of the physiological-, cariogenic and periodontitis-associated bacterial flora, respectively and ii) their difference in their biofilm forming ability. Microscopic analysis confirmed the results of safranin staining. Investigation of two species combinations of S. mitis with either S. mutans or A. actinomycetemcomitans revealed bacterial interactions influencing biofilm mass, biofilm structure and cell viability. CONCLUSIONS: This setup shows safranin staining, microscopic analysis and viable counts together are crucial for basic examination and evaluation of biofilms. Our experiment generated meaningful results, exemplified by the noted S. mitis influence, and allows a fast decision about the most important bacterial interactions which should be investigated in depth
Dynamic contrast in scanning microscopic OCT
While optical coherence tomography (OCT) provides a resolution down to 1
micrometer it has difficulties to visualize cellular structures due to a lack
of scattering contrast. By evaluating signal fluctuations, a significant
contrast enhancement was demonstrated using time-domain full-field OCT
(FF-OCT), which makes cellular and subcellular structures visible. The putative
cause of the dynamic OCT signal is ATP-dependent motion of cellular structures
in a sub-micrometer range, which provides histology-like contrast. Here we
demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT).
Given the inherent sectional imaging geometry, scanning FD-OCT provides
depth-resolved images across tissue layers, a perspective known from
histopathology, much faster and more efficiently than FF-OCT. Both, shorter
acquisition times and tomographic depth-sectioning reduce the sensitivity of
dynamic contrast for bulk tissue motion artifacts and simplify their correction
in post-processing. The implementation of dynamic contrast makes microscopic
FD-OCT a promising tool for histological analysis of unstained tissues.Comment: 7 pages, 3 figures, 1 Video available on reques
ARIA digital anamorphosis: Digital transformation of health and care in airway diseases from research to practice
Digital anamorphosis is used to define a distorted image of health and care that may be viewed correctly using digital tools and strategies. MASK digital anamorphosis represents the process used by MASK to develop the digital transformation of health and care in rhinitis. It strengthens the ARIA change management strategy in the prevention and management of airway disease. The MASK strategy is based on validated digital tools. Using the MASK digital tool and the CARAT online enhanced clinical framework, solutions for practical steps of digital enhancement of care are proposed
ΠΠ°Π΄Π°ΡΠ° ΡΠΎΠ·ΡΠ°Ρ ΡΠ½ΠΊΡ Π²ΡΠ΄Ρ ΠΈΠ»Π΅Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ Π½Ρ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ Π΄Π»Ρ Π±Π΅Π·ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΡ ΡΠΎΡΠΎΠ°ΠΊΡΡΡΠΈΡΠ½ΠΎΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΡΡ
Background. Photoacoustic tomography (PAT) is a relatively new imaging modality,which allows e.g. visualizing the vascular network in biological tissue noninvasively. This tomographic method has an advantage in comparison to pure optical/acoustical methods due to high optical contrast and low acoustic scattering in deep tissue. The common PAT methodology, based on measurements of the acoustic pressure by piezoelectric sensors placed on the tissue surface, limits its practical versatility. A novel, completely non-contact and full-field PAT system is described. In noncontact PAT the measurement of surface displacement induced by the acoustic pressure at the tissue/air border is researched.Objective. To solve a simulation problem of the displacement calculation based on the medium pressure, which consists in deriving a formula for recalculating the pressure in the surface displacement based on the momentum conservation law, developing a simulation technique, and comparing the error of the proposed technique with the earlier used one.Methods. Comparing the experimental data with simulated pressure data in the k-Wave toolbox. The criterion of comparison is the relative quadratic error.Results. The simulation results of the displacement based on a new approach are more consistent with the experimental data than previous. The quadratic error numerical value of the new approach is 18 % and the previous is 71 %.Conclusions. The theoretical features of the surface displacement simulation are investigated and the solution of this problem is proposed based on momentum conservation law. The implementation of the proposed methodology has a four times smaller simulation error compared to the previous technique, so it can be implemented in the non-contact PAT. The residual error can be caused by the properties of the tissue, which are not taken into account in the model, which requires further research.ΠΡΠΎΠ±Π»Π΅ΠΌΠ°ΡΠΈΠΊΠ°. Π€ΠΎΡΠΎΠ°ΠΊΡΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡ (Π€AT) ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π½ΠΎΠ²ΡΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠ΅ΡΠΊΠΈ ΡΠΎΡΡΠ΄ΠΎΠ² Π±ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠΊΠ°Π½ΠΈ Π½Π΅ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎ. ΠΡΠΎΡ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π½Π°Π΄ Π΄ΡΡΠ³ΠΈΠΌΠΈ ΡΡΠ³ΡΠ±ΠΎ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ/Π°ΠΊΡΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π±Π»Π°Π³ΠΎΠ΄Π°ΡΡ Π±ΠΎΠ»ΡΡΠΎΠΌΡ ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΠΎΠΌΡ ΠΊΠΎΠ½ΡΡΠ°ΡΡΡ ΠΈ Π½ΠΈΠ·ΠΊΠΈΠΌ ΠΏΠΎΡΠ΅ΡΡΠΌ ΡΠ½Π΅ΡΠ³ΠΈΠΈ Π² ΡΠΊΠ°Π½ΡΡ
. ΠΠ±ΡΠ΅ΠΈΠ·Π²Π΅ΡΡΠ½Π°Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π€ΠΠ’, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡΡ
Π°ΠΊΡΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π΄Π°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠ΅Π·ΠΎΡΠ»Π΅ΠΊΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌΠΈ Π΄Π°ΡΡΠΈΠΊΠ°ΠΌΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠΊΠ°Π½ΠΈ, ΠΈΠΌΠ΅Π΅Ρ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠ΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅. Π ΡΡΠ°ΡΡΠ΅ ΠΎΠΏΠΈΡΠ°Π½Π° Π½ΠΎΠ²Π°Ρ, ΠΏΠΎΠ»Π½ΠΎΡΡΡΡ Π±Π΅ΡΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½Π°Ρ Π€AT-ΡΠΈΡΡΠ΅ΠΌΠ° Ρ ΠΏΠΎΠ»Π½ΡΠΌ Π²ΠΎΠ·Π±ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ΠΌ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΎ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠ΅ ΠΎΡΠ»ΠΈΡΠΈΠ΅ Π±Π΅ΡΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΠΉ Π€ΠΠ’, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΡΠΎΡΡΠΎΠΈΡ Π² ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΈ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΡΠΊΠ°Π½ΠΈ, Π²ΡΠ·Π²Π°Π½Π½ΡΡ
Π°ΠΊΡΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ Π΄Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π½Π° Π³ΡΠ°Π½ΠΈΡΠ΅ ΡΠΊΠ°Π½ΡβΠ²ΠΎΠ·Π΄ΡΡ
.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. Π Π΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π²Π½ΡΡΡΠΈ ΡΡΠ΅Π΄Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΎΡΡΠΎΠΈΡ Π² Π²ΡΠ²ΠΎΠ΄Π΅ ΡΠΎΡΠΌΡΠ»Ρ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΡΡΠ΅ΡΠ° Π΄Π°Π²Π»Π΅Π½ΠΈΡ Π² ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π·Π°ΠΊΠΎΠ½Π° ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°, ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Ρ ΡΠ°Π½Π½Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π½ΠΎΠΉ.ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΡΠ°Π²Π½ΠΈΠ²Π°ΡΡΡΡ Ρ ΠΏΡΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠΌ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π² ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ΅ k-Wave toolbox. ΠΡΠΈΡΠ΅ΡΠΈΠΉ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ β ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½Π°Ρ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠΈΠ±ΠΊΠ°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΡΠΎΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π±ΠΎΠ»ΡΡΠ΅ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΠΉ. ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΎΡΠΈΠ±ΠΊΠ° Π½ΠΎΠ²ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ 18 %, ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ β 71 %.ΠΡΠ²ΠΎΠ΄Ρ. Π ΡΠ°Π±ΠΎΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΠΈ ΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ ΡΡΠΎΠΉ Π·Π°Π΄Π°ΡΠΈ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ Π·Π°ΠΊΠΎΠ½Π° ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ ΠΈΠΌΠΏΡΠ»ΡΡΠ°. Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΈΠΌΠ΅Π΅Ρ Π² ΡΠ΅ΡΡΡΠ΅ ΡΠ°Π·Π° ΠΌΠ΅Π½ΡΡΡΡ ΠΎΡΠΈΠ±ΠΊΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΡ Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΠΉ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½Π° Π² Π±Π΅ΡΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΠΉ Π€ΠΠ’. ΠΡΡΠ°ΡΠΎΡΠ½Π°Ρ ΠΎΡΠΈΠ±ΠΊΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π°ΠΌΠΈ ΡΠΊΠ°Π½ΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΡΡΠ΅Π½Ρ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΡΡΠΎ ΡΡΠ΅Π±ΡΠ΅Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ.ΠΡΠΎΠ±Π»Π΅ΠΌΠ°ΡΠΈΠΊΠ°. Π€ΠΎΡΠΎΠ°ΠΊΡΡΡΠΈΡΠ½Π° ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΡΡ (Π€AT) Ρ Π²ΡΠ΄Π½ΠΎΡΠ½ΠΎ Π½ΠΎΠ²ΠΈΠΌ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π΄ΡΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ, ΡΠΊΠΈΠΉ Π΄Π°Ρ Π·ΠΌΠΎΠ³Ρ ΠΎΡΡΠΈΠΌΠ°ΡΠΈ Π·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Π½Ρ ΠΌΠ΅ΡΠ΅ΠΆΡ ΡΡΠ΄ΠΈΠ½ Π±ΡΠΎΠ»ΠΎΠ³ΡΡΠ½ΠΎΡ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ Π½Π΅ΡΠ½Π²Π°Π·ΠΈΠ²Π½ΠΎ. Π¦Π΅ΠΉ ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΡΡΠ½ΠΈΠΉ ΠΌΠ΅ΡΠΎΠ΄ ΠΌΠ°Ρ ΠΏΠ΅ΡΠ΅Π²Π°Π³Ρ Π½Π°Π΄ ΡΠ½ΡΠΈΠΌΠΈ ΡΡΡΠΎ ΠΎΠΏΡΠΈΡΠ½ΠΈΠΌΠΈ/Π°ΠΊΡΡΒΡΠΈΡΠ½ΠΈΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ Π·Π°Π²Π΄ΡΠΊΠΈ Π²Π΅Π»ΠΈΠΊΠΎΠΌΡ ΠΎΠΏΡΠΈΡΠ½ΠΎΠΌΡ ΠΊΠΎΠ½ΡΡΠ°ΡΡΡ Ρ Π½ΠΈΠ·ΡΠΊΠΈΠΌ Π²ΡΡΠ°ΡΠ°ΠΌ Π΅Π½Π΅ΡΠ³ΡΡ Π² ΡΠΊΠ°Π½ΠΈΠ½Π°Ρ
. ΠΠ°Π³Π°Π»ΡΠ½ΠΎΠ²ΡΠ΄ΠΎΠΌΠ° ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° Π€ΠΠ’, ΡΠΎ Π±Π°Π·ΡΡΡΡΡΡ Π½Π° Π²ΠΈΠΌΡΡΡΠ²Π°Π½Π½ΡΡ
Π°ΠΊΡΡΡΠΈΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΊΡ ΠΏβΡΠ·ΠΎΠ΅Π»Π΅ΠΊΡΡΠΈΡΠ½ΠΈΠΌΠΈ Π΄Π°ΡΡΠΈΠΊΠ°ΠΌΠΈ, ΡΠΎΠ·ΠΌΡΡΠ΅Π½ΠΈΠΌΠΈ Π½Π° ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ, ΠΌΠ°Ρ ΠΎΠ±ΠΌΠ΅ΠΆΠ΅Π½Π΅ ΠΏΡΠ°ΠΊΡΠΈΡΠ½Π΅ Π²ΠΈΠΊΠΎΡΠΈΡΡΠ°Π½Π½Ρ. Π£ ΡΡΠ°ΡΡΡ ΠΎΠΏΠΈΡΠ°Π½Π° Π½ΠΎΠ²Π°, ΠΏΠΎΠ²Π½ΡΡΡΡ Π±Π΅Π·ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½Π° Π€AT-ΡΠΈΡΡΠ΅ΠΌΠ° Π· ΠΏΠΎΠ²Π½ΠΈΠΌ Π·Π±ΡΠ΄ΠΆΠ΅Π½Π½ΡΠΌ. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΠΎΡΠ½ΠΎΠ²Π½Ρ Π²ΡΠ΄ΠΌΡΠ½Π½ΡΡΡΡ Π±Π΅Π·ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΠΎΡ Π€ΠΠ’, ΡΠΎ ΠΏΠΎΠ»ΡΠ³Π°Ρ Ρ Π²ΠΈΠΌΡΡΡΠ²Π°Π½Π½Ρ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ, ΡΠΏΡΠΈΡΠΈΠ½Π΅Π½ΠΈΡ
Π°ΠΊΡΡΡΠΈΡΠ½ΠΈΠΌ ΡΠΈΡΠΊΠΎΠΌ Π½Π° ΠΌΠ΅ΠΆΡ ΡΠΊΠ°Π½ΠΈΠ½Π°βΠΏΠΎΠ²ΡΡΡΡ.ΠΠ΅ΡΠ° Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ. Π ΠΎΠ·Π²βΡΠ·Π°ΡΠΈ Π·Π°Π΄Π°ΡΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΈΡΠΊΡ Π²ΡΠ΅ΡΠ΅Π΄ΠΈΠ½Ρ ΡΠ΅ΡΠ΅Π΄ΠΎΠ²ΠΈΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΠ³Π°Ρ Ρ Π²ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ ΡΠΎΡΠΌΡΠ»ΠΈ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΡΠ°Ρ
ΡΠ½ΠΊΡ ΡΠΈΡΠΊΡ Π² Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ Π·Π°ΠΊΠΎΠ½Ρ Π·Π±Π΅ΡΠ΅ΠΆΠ΅Π½Π½Ρ ΡΠΌΠΏΡΠ»ΡΡΡ, ΡΠΎΠ·ΡΠΎΠ±ΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ Ρ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ ΠΏΠΎΠΌΠΈΠ»ΠΊΠΈ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π· ΡΠ°Π½ΡΡΠ΅ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π½ΠΎΡ.ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΡΠ΅Π°Π»ΡΠ·Π°ΡΡΡ. ΠΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Ρ Π΄Π°Π½Ρ ΠΏΠΎΡΡΠ²Π½ΡΡΡΡΡΡ Π· ΠΏΡΠΎΠΌΠΎΠ΄Π΅Π»ΡΠΎΠ²Π°Π½ΠΈΠΌ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½ΡΠΌ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ Π² ΠΏΡΠΎΠ³ΡΠ°ΠΌΡ k-Wave toolbox. ΠΡΠΈΡΠ΅ΡΡΠΉ ΠΏΠΎΡΡΠ²Π½ΡΠ½Π½Ρ β Π²ΡΠ΄Π½ΠΎΡΠ½Π° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ°.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ. ΠΡΠΎΠΌΠΎΠ΄Π΅Π»ΡΠΎΠ²Π°Π½Ρ Π΄Π°Π½Ρ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ Π½ΠΎΠ²ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ Π±ΡΠ»ΡΡΠ΅ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π°ΡΡΡ Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΡ ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ Π· ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΡ. ΠΠ²Π°Π΄ΡΠ°ΡΠΈΡΠ½Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° Π½ΠΎΠ²ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ 18 %, ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎΡ β 71 %.ΠΠΈΡΠ½ΠΎΠ²ΠΊΠΈ. Π£ ΡΠΎΠ±ΠΎΡΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½ΠΎ ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ½Ρ ΠΎΡΠΎΠ±Π»ΠΈΠ²ΠΎΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ ΡΠ° Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ ΡΠΎΠ·Π²βΡΠ·Π°Π½Π½Ρ ΡΡΡΡ Π·Π°Π΄Π°ΡΡ Π½Π° ΠΎΡΠ½ΠΎΠ²Ρ Π·Π°ΠΊΠΎΠ½Ρ Π·Π±Π΅ΡΠ΅ΠΆΠ΅Π½Π½Ρ ΡΠΌΠΏΡΠ»ΡΡΡ. Π Π΅Π°Π»ΡΠ·Π°ΡΡΡ Π·Π°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΠΌΠ°Ρ Π² ΡΠΎΡΠΈΡΠΈ ΡΠ°Π·ΠΈ ΠΌΠ΅Π½ΡΡ ΠΏΠΎΠΌΠΈΠ»ΠΊΡ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ Π²ΡΠ΄Ρ
ΠΈΠ»Π΅Π½Π½Ρ ΠΏΠΎΡΡΠ²Π½ΡΠ½ΠΎ Π· ΠΏΠΎΠΏΠ΅ΡΠ΅Π΄Π½ΡΠΎΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΎΡ, ΡΠΎΠΌΡ Π²ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ ΡΠ΅Π°Π»ΡΠ·ΠΎΠ²Π°Π½Π° Ρ Π±Π΅Π·ΠΊΠΎΠ½ΡΠ°ΠΊΡΠ½ΡΠΉ Π€ΠΠ’. ΠΠ°Π»ΠΈΡΠΊΠΎΠ²Π° ΠΏΠΎΠΌΠΈΠ»ΠΊΠ° ΠΌΠΎΠΆΠ΅ Π±ΡΡΠΈ ΡΠΏΡΠΈΡΠΈΠ½Π΅Π½Π° Π²Π»Π°ΡΡΠΈΠ²ΠΎΡΡΡΠΌΠΈ ΡΠΊΠ°Π½ΠΈΠ½ΠΈ, ΡΠΊΡ Π½Π΅ Π²ΡΠ°Ρ
ΠΎΠ²Π°Π½Ρ Π² ΠΌΠΎΠ΄Π΅Π»Ρ, ΡΠΎ ΠΏΠΎΡΡΠ΅Π±ΡΡ ΠΏΠΎΠ΄Π°Π»ΡΡΠΈΡ
Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Ρ