While optical coherence tomography (OCT) provides a resolution down to 1
micrometer it has difficulties to visualize cellular structures due to a lack
of scattering contrast. By evaluating signal fluctuations, a significant
contrast enhancement was demonstrated using time-domain full-field OCT
(FF-OCT), which makes cellular and subcellular structures visible. The putative
cause of the dynamic OCT signal is ATP-dependent motion of cellular structures
in a sub-micrometer range, which provides histology-like contrast. Here we
demonstrate dynamic contrast with a scanning frequency-domain OCT (FD-OCT).
Given the inherent sectional imaging geometry, scanning FD-OCT provides
depth-resolved images across tissue layers, a perspective known from
histopathology, much faster and more efficiently than FF-OCT. Both, shorter
acquisition times and tomographic depth-sectioning reduce the sensitivity of
dynamic contrast for bulk tissue motion artifacts and simplify their correction
in post-processing. The implementation of dynamic contrast makes microscopic
FD-OCT a promising tool for histological analysis of unstained tissues.Comment: 7 pages, 3 figures, 1 Video available on reques