6 research outputs found

    In vitro activity of immunosuppressive drugs against Plasmodium falciparum

    Get PDF
    Background Solid organ transplant recipients are particularly vulnerable for infectious diseases due to prolonged immunosuppressive treatment. Residents of endemic regions and travellers may be exposed to malaria and may, therefore, require prolonged antimalarial chemoprophylaxis. The hypothesis of this study was that certain immunosuppressive drugs may exert clinically relevant anti- malarial activity. It was therefore designed to assess the intrinsic anti- malarial activity of everolimus, mycophenolic acid, and rapamycin against Plasmodium falciparum in an in vitro model. Methods Three laboratory adapted clones of P. falciparum and two isolates were used to assess the potential of mycophenolic acid, rapamycin and everolimus to inhibit in vitro growth of P. falciparum. The standard histidine rich protein 2 assay was employed and inhibitory drug concentrations (IC) were computed by non-linear regression analysis. Results All drugs were associated with complete inhibition of P. falciparum growth in in vitro assays. Mycophenolic acid demonstrated IC50 and IC90 values of 5.4 μmol/L and 15.3 μmol/L. Rapamycin inhibited P. falciparum growth at 7.2 μmol/L (IC50) and 12.5 μmol/L (IC90), respectively. Finally, everolimus displayed IC50 and IC90 values of 6.2 μmol/L and 11.5 μmol/L. There was no difference in in vitro activity against chloroquine sensitive or chloroquine resistant parasites. Conclusions All immunosuppressive drugs evaluated in this in vitro study demonstrated activity against P. falciparum. Inhibitory concentrations of mycophenolic acid are within clinically achievable plasma concentrations when used in solid organ transplant recipients. Further in vivo evaluation of mycophenolic acid either alone or in combination regimens may prove promising for the concomitant prevention of P. falciparum in solid organ transplant recipients living or travelling in malaria endemic regions

    The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation

    Get PDF
    Background: Shear stress induces coronary dilatation via production of nitric oxide ( NO). This should involve the endothelial glycocalyx ( EG). A greater effect was expected of albumin versus hydroxyethyl starch ( HES) perfusion, because albumin seals coronary leaks more effectively than HES in an EG-dependent way. Methods: Isolated hearts ( guinea pigs) were perfused at constant pressure with Krebs-Henseleit buffer augmented with 1/3 volume 5% human albumin or 6% HES ( 200/0.5 or 450/0.7). Coronary flow was also determined after EG digestion ( heparinase) and with nitro-L-arginine ( NO-L-Ag). Results: Coronary flow ( 9.50 +/- 1.09, 5.10 +/- 0.49, 4.87 +/- 1.19 and 4.15 +/- 0.09 ml/ min/ g for `albumin', `HES 200', `HES 450' and `control', respectively, n = 5-6) did not correlate with perfusate viscosity ( 0.83, 1.02, 1.24 and 0.77 cP, respectively). NO-L-Ag and heparinase diminished dilatation by albumin, but not additively. Alone NO-L-Ag suppressed coronary flow during infusion of HES 450. Electron microscopy revealed a coronary EG of 300 nm, reduced to 20 nm after heparinase. Cultured endothelial cells possessed an EG of 20 nm to begin with. Conclusions: Albumin induces greater endothelial shear stress than HES, despite lower viscosity, provided the EG contains negative groups. HES 450 causes some NO-mediated dilatation via even a rudimentary EG. Cultured endothelial cells express only a rudimentary glycocalyx, limiting their usefulness as a model system. Copyright (c) 2007 S. Karger AG, Basel

    GCH1 haplotype determines vascular and plasma biopterin availability in coronary artery disease - Effects on vascular superoxide production and endothelial function

    No full text
    Objectives This study sought to determine the effects of endogenous tetrahydrobiopterin (BH4) bioavailability on endothelial nitric oxide synthase (eNOS) coupling, nitric oxide (NO) bioavailability, and vascular superoxide production in patients with coronary artery disease (CAD). Background GTP-cyclohydrolase I, encoded by the GCH1 gene, is the rate-limiting enzyme in the biosynthesis of BH4, an eNOS cofactor important for maintaining enzymatic coupling. We examined the associations between haplotypes of the GCH1 gene, GCH1 expression and biopterin levels, and the effects on endothelial function and vascular superoxide production. Methods Blood samples and segments of internal mammary arteries and saphenous veins were obtained from patients with CAD undergoing coronary artery bypass grafting (n = 347). The GCH1 haplotypes were defined by 3 polymorphisms: rs8007267G < A, rs3783641A < T, and rs10483639C < G (X haplotype: A, T, G; O haplotype: any other combination). Vascular superoxide (+/- the eNOS inhibitor NG-nitro-L-arginine methyl ester [L-NAME]) was measured by lucigenin-enhanced chemiluminescence, whereas the vasorelaxations of saphenous veins to acetylcholine were evaluated ex vivo. Results Haplotype frequencies were OO 70.6%, XO 27.4%, and XX 2.0%. The X haplotype was associated with significantly lower vascular GCH1 messenger ribonucleic acid expression and substantial reductions in both plasma and vascular BH4 levels. In X haplotype carriers both vascular superoxide and L-NAME-inhibitable superoxide were significantly increased, and were associated with reduced vasorelaxations to acetylcholine. Conclusions GCH1 gene expression, modulated by a particular GCH1 haplotype, is a major determinant of BH4 bioavailability both in plasma and in the vascular wall in patients with CAD. Genetic variation in GCH1 underlies important differences in endogenous BH4 availability and is a determinant of eNOS coupling, vascular redox state, and endothelial function in human vascular disease

    Estimation of biomass and carbon stocks: the case of the Atlantic Forest

    Get PDF
    The main objective of this paper is to present and discuss the best methods to estimate live above ground biomass in the Atlantic Forest. The methods presented and conclusions are the products of a workshop entitled "Estimation of Biomass and Carbon Stocks: the Case of Atlantic Rain Forest". Aboveground biomass (AGB) in tropical forests is mainly contained in trees. Tree biomass is a function of wood volume, obtained from the diameter and height, architecture and wood density (dry weight per unit volume of fresh wood). It can be quantified by the direct (destructive) or indirect method where the biomass quantification is estimated using mathematical models. The allometric model can be site specific when elaborated to a particular ecosystem or general that can be used in different sites. For the Atlantic Forest, despite the importance of it, there are only two direct measurements of tree biomass, resulting in allometric models specific for this ecosystem. To select one or other of the available models in the literature to estimate AGB it is necessary take into account what is the main question to be answered and the ease with which it is possible to measure the independent variables in the model. Models that present more accurate estimates should be preferred. However, more simple models (those with one independent variable, usually DBH) can be used when the focus is monitoring the variation in carbon storage through the time. Our observations in the Atlantic Forest suggest that pan-tropical relations proposed by Chave et al. (2005) can be confidently used to estimated tree biomass across biomes as long as tree diameter (DBH), height, and wood density are accounted for in the model. In Atlantic Forest, we recommend the quantification of biomass of lianas, bamboo, palms, tree ferns and epiphytes, which are an important component in this ecosystem. This paper is an outcome of the workshop entitled "Estimation of Biomass and Carbon Stocks: the Case of Atlantic Rain Forest", that was conducted at Ubatuba, São Paulo, Brazil, between 4 and 8 December 2006 as part of the Brazilian project "Ombrophylus Dense Forest floristic composition, structure and function at the Núcleos Picinguaba and Santa Virginia of the Serra do Mar State Park", BIOTA Gradiente
    corecore