18 research outputs found

    Density Waves in Granular Flow: A Kinetic Wave Approach

    Full text link
    It was recently observed that sand flowing down a vertical tube sometimes forms a traveling density pattern in which a number of regions with high density are separated from each other by regions of low density. In this work, we consider this behavior from the point of view of kinetic wave theory. Similar density patterns are found in molecular dynamic simulations of the system, and a well defined relationship is observed between local flux and local density -- a strong indicator of the presence of kinetic waves. The equations of motion for this system are also presented, and they allow kinetic wave solutions. Finally, the pattern formation process is investigated using a simple model of interacting kinetic waves.Comment: RevTeX, HLRZ preprint 46/93, 4 figures available upon reques

    A Model for the Propagation of Sound in Granular Materials

    Full text link
    This paper presents a simple ball-and-spring model for the propagation of small amplitude vibrations in a granular material. In this model, the positional disorder in the sample is ignored and the particles are placed on the vertices of a square lattice. The inter-particle forces are modeled as linear springs, with the only disorder in the system coming from a random distribution of spring constants. Despite its apparent simplicity, this model is able to reproduce the complex frequency response seen in measurements of sound propagation in a granular system. In order to understand this behavior, the role of the resonance modes of the system is investigated. Finally, this simple model is generalized to include relaxation behavior in the force network -- a behavior which is also seen in real granular materials. This model gives quantitative agreement with experimental observations of relaxation.Comment: 21 pages, requires Harvard macros (9/91), 12 postscript figures not included, HLRZ preprint 6/93, (replacement has proper references included

    A Case Study for Large-Scale Human Microbiome Analysis Using JCVI’s Metagenomics Reports (METAREP)

    Get PDF
    As metagenomic studies continue to increase in their number, sequence volume and complexity, the scalability of biological analysis frameworks has become a rate-limiting factor to meaningful data interpretation. To address this issue, we have developed JCVI Metagenomics Reports (METAREP) as an open source tool to query, browse, and compare extremely large volumes of metagenomic annotations. Here we present improvements to this software including the implementation of a dynamic weighting of taxonomic and functional annotation, support for distributed searches, advanced clustering routines, and integration of additional annotation input formats. The utility of these improvements to data interpretation are demonstrated through the application of multiple comparative analysis strategies to shotgun metagenomic data produced by the National Institutes of Health Roadmap for Biomedical Research Human Microbiome Project (HMP) (http://nihroadmap.nih.gov). Specifically, the scalability of the dynamic weighting feature is evaluated and established by its application to the analysis of over 400 million weighted gene annotations derived from 14 billion short reads as predicted by the HMP Unified Metabolic Analysis Network (HUMAnN) pipeline. Further, the capacity of METAREP to facilitate the identification and simultaneous comparison of taxonomic and functional annotations including biological pathway and individual enzyme abundances from hundreds of community samples is demonstrated by providing scenarios that describe how these data can be mined to answer biological questions related to the human microbiome. These strategies provide users with a reference of how to conduct similar large-scale metagenomic analyses using METAREP with their own sequence data, while in this study they reveal insights into the nature and extent of variation in taxonomic and functional profiles across body habitats and individuals. Over one thousand HMP WGS datasets and the latest open source code are available at http://www.jcvi.org/hmp-metarep

    Bioavailability of Macro and Micronutrients Across Global Topsoils: Main Drivers and Global Change Impacts

    Get PDF
    Understanding the chemical composition of our planet\u27s crust was one of the biggest questions of the 20th century. More than 100 years later, we are still far from understanding the global patterns in the bioavailability and spatial coupling of elements in topsoils worldwide, despite their importance for the productivity and functioning of terrestrial ecosystems. Here, we measured the bioavailability and coupling of thirteen macro- and micronutrients and phytotoxic elements in topsoils (3–8 cm) from a range of terrestrial ecosystems across all continents (∼10,000 observations) and in response to global change manipulations (∼5,000 observations). For this, we incubated between 1 and 4 pairs of anionic and cationic exchange membranes per site for a mean period of 53 days. The most bioavailable elements (Ca, Mg, and K) were also amongst the most abundant in the crust. Patterns of bioavailability were biome-dependent and controlled by soil properties such as pH, organic matter content and texture, plant cover, and climate. However, global change simulations resulted in important alterations in the bioavailability of elements. Elements were highly coupled, and coupling was predictable by the atomic properties of elements, particularly mass, mass to charge ratio, and second ionization energy. Deviations from the predictable coupling-atomic mass relationship were attributed to global change and agriculture. Our work illustrates the tight links between the bioavailability and coupling of topsoil elements and environmental context, human activities, and atomic properties of elements, thus deeply enhancing our integrated understanding of the biogeochemical connections that underlie the productivity and functioning of terrestrial ecosystems in a changing world

    Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein

    Get PDF
    Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings

    Pyruvate Formate Lyase Acts as a Formate Supplier for Metabolic Processes during Anaerobiosis in Staphylococcus aureusâ–¿

    No full text
    Previous studies demonstrated an upregulation of pyruvate formate lyase (Pfl) and NAD-dependent formate dehydrogenase (Fdh) in Staphylococcus aureus biofilms. To investigate their physiological role, we constructed fdh and pfl deletion mutants (Δfdh and Δpfl). Although formate dehydrogenase activity in the fdh mutant was lost, it showed little phenotypic alterations under oxygen-limited conditions. In contrast, the pfl mutant displayed pleiotropic effects and revealed the importance of formate production for anabolic metabolism. In the pfl mutant, no formate was produced, glucose consumption was delayed, and ethanol production was decreased, whereas acetate and lactate production were unaffected. All metabolic alterations could be restored by addition of formate or complementation of the Δpfl mutant. In compensation reactions, serine and threonine were consumed better by the Δpfl mutant than by the wild type, suggesting that their catabolism contributes to the refilling of formyl-tetrahydrofolate, which acts as a donor of formyl groups in, e.g., purine and protein biosynthesis. This notion was supported by reduced production of formylated peptides by the Δpfl mutant compared to that of the parental strain, as demonstrated by weaker formyl-peptide receptor 1 (FPR1)-mediated activation of leukocytes with the mutant. FPR1 stimulation could also be restored either by addition of formate or by complementation of the mutation. Furthermore, arginine consumption and arc operon transcription were increased in the Δpfl mutant. Unlike what occurred with the investigated anaerobic conditions, a biofilm is distinguished by nutrient, oxygen, and pH gradients, and we thus assume that Pfl plays a significant role in the anaerobic layer of a biofilm. Fdh might be critical in (micro)aerobic layers, as formate oxidation is correlated with the generation of NADH/H+, whose regeneration requires respiration

    Role of <it>N</it>-terminal protein formylation in central metabolic processes in <it>Staphylococcus aureus</it>

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacterial protein biosynthesis usually depends on a formylated methionyl start tRNA but <it>Staphylococcus aureus</it> is viable in the absence of Fmt, the tRNA<sup>Met</sup> formyl transferase. <it>fmt</it> mutants exhibit reduced growth rates indicating that the function of certain proteins depends on formylated N-termini but it has remained unclear, which cellular processes are abrogated by the lack of formylation.</p> <p>Results</p> <p>In order to elucidate how global metabolic processes are affected by the absence of formylated proteins the exometabolome of an <it>S. aureus fmt</it> mutant was compared with that of the parental strain and the transcription of corresponding enzymes was analyzed to identify possible regulatory changes. The mutant consumed glucose and other carbon sources slower than the wild type. While the turnover of several metabolites remained unaltered <it>fmt</it> inactivation led to increases pyruvate release and, concomitantly, reduced pyruvate dehydrogenase activity. In parallel, the release of the pyruvate-derived metabolites lactate, acetoin, and alanine was reduced. The anaerobic degradation of arginine was also reduced in the <it>fmt</it> mutant compared to the wild-type strain. Moreover, the lack of formylated proteins caused increased susceptibility to the antibiotics trimethoprim and sulamethoxazole suggesting that folic acid-dependant pathways were perturbed in the mutant.</p> <p>Conclusions</p> <p>These data indicate that formylated proteins are crucial for specific bacterial metabolic processes and they may help to understand why it has remained important during bacterial evolution to initiate protein biosynthesis with a formylated tRNA<sup>Met</sup>.</p
    corecore