100 research outputs found

    Coherent Mixing of Singlet and Triplet States in Acrolein and Ketene: A Computational Strategy for Simulating the Electron–Nuclear Dynamics of Intersystem Crossing

    Get PDF
    We present a theoretical study of intersystem crossing (ISC) in acrolein and ketene with the Ehrenfest method that can describe a superposition of singlet and triplet states. Our simulations illustrate a new mechanistic effect of ISC, namely, that a superposition of singlets and triplets yields nonadiabatic dynamics characteristic of that superposition rather than the constituent state potential energy surfaces. This effect is particularly significant in ketene, where mixing of singlet and triplet states along the approach to a singlet/singlet conical intersection occurs, with the spin–orbit coupling (SOC) remaining small throughout. In both cases, the effects require many recrossings of the singlet/triplet state crossing seam, consistent with the textbook treatment of ISC

    Non-adiabatic dynamics close to conical intersections and the surface hopping perspective

    Get PDF
    Conical intersections play a major role in the current understanding of electronic de-excitation in polyatomic molecules, and thus in the description of photochemistry and photophysics of molecular systems. This article reviews aspects of the basic theory underlying the description of non-adiabatic transitions at conical intersections, with particular emphasis on the important case when the dynamics of the nuclei are treated classically. Within this classical nuclear motion framework, the main aspects of the surface hopping methodology in the conical intersection context are presented. The emerging picture from this treatment is that of electronic transitions around conical intersections dominated by the interplay of the nuclear velocity and the derivative non-adiabatic coupling vector field

    Electron and nuclear dynamics following ionisation of modified bismethylene-adamantane

    Get PDF
    We have simulated the coupled electron and nuclear dynamics using the Ehrenfest method upon valence ionisation of modified bismethylene-adamantane (BMA) molecules where there is an electron transfer between the two π bonds. We have shown that the nuclear motion significantly affects the electron dynamics after a few fs when the electronic states involved are close in energy. We have also demonstrated how the non-stationary electronic wave packet determines the nuclear motion, more precisely the asymmetric stretching of the two π bonds, illustrating “charge-directed reactivity”. Taking into account the nuclear wave packet width results in the dephasing of electron dynamics with a half-life of 8 fs; this eventually leads to the equal delocalisation of the hole density over the two methylene groups and thus symmetric bond lengths

    How electronic superpositions drive nuclear motion following the creation of a localized hole in the glycine radical cation

    Get PDF
    In this work we have studied the nuclear and electron dynamics in the glycine cation starting from localized hole states, using the Quantum Ehrenfest (QuEh) method. The nuclear dynamics is controlled both by the initial gradient and by the instantaneous gradient that results from the oscillatory electron dynamics (charge migration). We have used the Fourier transform (FT) of the spin densities to identify the normal modes of the electron dynamics. We observe an isomorphic relationship between the electron dynamics normal modes (ED-NM) and the nuclear dynamics, seen in the vibrational normal modes (Vib-NM). The FT spectra obtained this way show bands that are characteristic of the energy differences between the adiabatic hole states. These bands contain individual peaks that are in one-to-one correspondence with atom pair (+ •) ↔(• +) resonances (APR), which in turn stimulate nuclear motion involving the atom pair. With such understanding we anticipate 'designer' coherent superpositions that can drive nuclear motion in a particular direction
    corecore